

Axial Piston Variable Pump A4VG (US-Version)

RA-A 92004/06.12 1/66 Replaces: 12.11

Data sheet

Series 40 Size 45 to 280 Nominal pressure 6500 psi (450 bar) Maximum pressure 7250 psi (500 bar) Closed circuit

Contents

Ordering code for standard program	2
Technical data	6
HP – Proportional control hydr., pilot-pressure related	12
HW - Proportional control hydraulic, mechanical servo	13
EP – Proportional control electric	14
EZ – Two-point control electric	15
DA – Automatic control speed-related	16
HT – Hydraulic control, direct controlled	18
EV – Electric control, direct controlled	19
Dimensions size 45 to 280	20
Through drive dimensions	48
Overview of mounting options	51
Combination pumps A4VG + A4VG	52
Pressure cut-off	53
Bypass function	53
High-pressure relief valves	54
Mechanical stroke limiter	55
Ports X_3 and X_4 for stroking chamber pressure	55
Filtration boost circuit / external supply	56
Connector for solenoids	60
Speed sensor	60
Swivel angle sensor	61
Installation dimensions for coupling assembly	62
Installation instructions	63
General instructions	65

Features

- Variable axial piston pump of swashplate design for hydrostatic drives in closed circuit
- The flow is proportional to the drive speed and displacement.
- The flow can be infinitely varied by adjusting the swashplate angle.
- Flow direction changes smoothly when the swashplate is moved through the neutral position.
- A wide range of highly adaptable control devices with different control and regulating functions, for all important applications.
- Two pressure-relief valves are provided on the high-pressure side to protect the hydrostatic transmission (pump and motor) from overload.
- The high-pressure relief valves also function as boost valves.
- The integrated boost pump acts as a feed pump and control pressure supply.
- The maximum boost pressure is limited by a built-in low-pressure relief valve.
- High pressure level for high power density and good efficiency

A4V	G								/	<mark>40</mark>	Α		Ν						Α		0		Ι	
01	02	03	04	05	06	07	08	09		10	-11	12	13	14	15	16	17	18	19	20	21	22		23

Axial piston unit

Operating mode 02 Pump, closed circuit

01	Swashplate design,	variable, nominal j	pressure 6500 psi (450 b	ar), maximum pressure	7250 psi (500 bar)
----	--------------------	---------------------	--------------------------	-----------------------	--------------------

A4V

G

Sizes (NG)

00	Geometric displacement,	see table of values on page 9	in cm ³	045	065	085	110	145	175	210	280	
03			in in ³ /rev	2.75	3.97	5.19	6.71	8.85	10.68	12.81	17.09	
	Control devices			045	065	085	110	145	175	210	280	
	Proportional control hydraulic	pilot-pressure related	p = 90 to 260 psi (6 to 18 bar)	0	•	0	0	0	0	0	0	HP1
		mechanical servo,		•		•	•	lacksquare	lacksquare	•		HW2
		hexagon shaft with lever, free position ¹⁾	with neutral position switch	•	•	•	•	•	•	•	•	HW8
	Proportional control		U = 12 V DC	•						•		EP1
	electric		U = 24 V DC				lacksquare	lacksquare	ullet	•	\bullet	EP2
04	Two-point control		U = 12 V DC				•	•	\bullet			EZ1
	electric		U = 24 V DC					\bullet	•			EZ2
	Automatic control		U = 12 V DC				•	\bullet	\bullet			DA1
	speed-related		U = 24 V DC			\bullet	\bullet	\bullet	\bullet	•	\bullet	DA2
	Hydraulic control, direct o	controlled				•	\bullet	\bullet	\bullet	0	0	HT1
	Electric control, direct co	ntrolled, with one pressure	U = 12 V DC	•	•	•	•	ullet	•	-	-	EV1
	reducing valve (DRE) and	4/3-directional valve	U = 24 V DC			•	•	\bullet	\bullet	-	-	EV2
	Pressure cut-off (see page	ge 53)		045	065	085	110	145	175	210	280	
	Without pressure cut-off	without bypass		•	•	●	●	•	•	●	•	0
05		with bypass		0	0	٠	٠	•	•	0	О	С
	Pressure cut-off	with bypass										D
	Connector for solenoids	²⁾ (see page 60)		045	065	085	110	145	175	210	280	
	Without connector (witho	ut solenoid, only with hydraulic	controls)									0
06	DEUTSCH - molded con	nector, 2-pin – without suppres	ssor diode	•	•	•		•	•	•	•	Р
	Swivel angle sensor (see	e page 61)		045	065	085	110	145	175	210	280	
07	Without swivel angle sen	sor										0
07	Electric swivel angle sense	sor mounted ³⁾					•	•	•			R
	Additional functions (see	a page 55)		045	065	085	110	145	175	210	280	

	Additional functions (see page 55)	045	065	085	110	145	175	210	280	
	Without additional functions									0
~~	Mechanical stroke limiter, externally adjustable		٠	•		•	•	•	\bullet	М
08	Ports X ₃ , X ₄ for stroking chamber pressure						•			Т
	Mechanical stroke limiter and ports X_3 , X_4	•	•	•	•	•	•	•	•	В

 \bullet = Available

O = On request- = Not available

= Preferred program

1) On delivery, the position of the lever may differ from that shown in the brochure or drawing. If necessary, the position of the lever can be adjusted by the customer.

2) Connectors for other electric components can deviate.

3) Please contact us if the swivel angle sensor is used for control

				,							'		<u> </u>												
A4	١V	G								/	40	Α		N						A				_	
0	1	02	03	04	05	06	07	08	09		10	11	12	13	14	15	16	17	7 18	3 19	9 20	2	1 25	2	23
I	DA c	onti	ol va	alve (see p	bage	17)											ΕZ	EV	ΗP	НW	ΗT	DA	EΡ	
	With	hout	DA	contro	ol valv	ve												•	•	•			-		0
	DA	cont	rol va	alve, f	fixed	settin	g											-	-	•	•		•	•	1
	DA	conti	ol va	lve, m	nech.			Act	uating	g dire	ction	ri	ght					-	-	•	•		•	•	2
	adju	stab	le wit	h pos	sition							le	ft					-	_	•	•	•		•	3
09		r oont	rolv	alvo f	fixed	oottin	a	l brok	dina in		luo		ooro	ling t		400	5							-	
	mou	intec	d. coi	ntrol v	with b	orake	g and fluid	i Drak	ang in	ich va	ive	n	o min	neral d	bil	492	5,	-	-	-	-	-	0	-	4
			,									b	ased	on m	ineral	oil		-	-	-	-	-	0	-	5
	DA	cont	rol va	alve, f	fixed	settin	g, po	rts fo	r pilot	cont	rol de	evice	;					-	-	•	•			•	6
							0/1		•													1			
: 	Serie	es	· .																						40
10	Seri	es 4	, ind	ex O																					40
	Conf	figur	atio	n of p	oorts	and	faste	ning	threa	ds															
11	ANS	SI, p	ort th	read	s with	n O-ri	ng se	al ac	cordir	ng to	ISO [·]	1192	6												Α
	Dire	ctior	ns of	rota	tion																				
	Viev	ved	on di	ive s	haft							c	lockw	vise											R
12												C	ounte	er-cloo	ckwis	е									L
10	Seal	S D (n)	مانيد			a) ak	-4			(4)															N
13	INDI	x (m	trile-	Jaour	Chou	c), sr	anse	aim		(IIUOI	-caot		Juc)												IN
	Mou	ntin	g fla	nges												04	45	065	085	110	145	175	210	280	-
	SAE	E J74	4			10	1-2											-	-	-	-	-	-	-	B2
						_12	27-2											-	-	-	-	-	-	-	C2
14						12	27-2/4	1									-		•	•	-	-	-	-	C6
						_15	2-2/4	4								·	-	-	-	•		•	-	-	D6
						16	5-4									-	-	-	-	-	-				E4
1	Drive	e sh	afts	(perm	nissib	le inc	ut to	raues	see	oade	11)					04	45	065	085	110	145	175	210	280	
	Spli	ned	shaft			1	1/4 ir	14T	12/24	4DP	,								-	_	_	-	_	_	S 7
	ANS	SI B§	92.1a	L		1	1/2 ir	ו 17T	12/24	4DP								0	-	-	-	-	-	-	S9
						1	3/8 ii	n 21T	16/3	2DP						1.	- †	-			-	-	-	-	V8
15						1	3/4 ir	n 13T	8/16	DP						1.	- †	-		•			-	-	T1
						2	in 15	T 8/1	6DP							1.	-	-	-	•	•	-			T2
						2	1/4 ir	n 17T	8/16[DP						1.	-	-	-	-	•	•	0	•	Т3
· · · · ·	^																	007	007			4==			·
	Serv	lice	ine p	orts												04	45	065	085	110	145	175	210	280	

	Service line ports	045	065	085	110	145	175	210	280	
16	SAE flange ports A and B, on left side (45°)	•					\bullet	\bullet	\bullet	1
10	SAE flange ports A and B, on right side (45°) ⁴⁾	•		-	-		ullet		\bullet	2

• = Available O = On request - = Not available

4) Only possible without mountable filter.

A4V	G								/	40	Α		Ν						Α		0		-	
01	02	03	04	05	06	07	08	09		10	11	12	13	14	15	16	17	18	19	20	21	22		23

	Rotary group configurati	ons and boost pump	045	065	085	110	145	175	210	280	
	Standard rotary group	boost pump integrated, through drive convertible									F
417		without boost pump, through drive convertible		•	•	•		•	0	0	U
17	High-speed rotary group	boost pump integrated, through drive convertible	-	-	I		\bullet		-	-	V
		without boost pump, through drive convertible	-	-	I		\bullet		-	-	W

	Through drives	s (mounting	g options see	page 51)											
	Flange SAE J7	44		Couplin	g for splined s	shaft ⁵⁾									
		Mounting	variant												
	Diameter	Symbol ⁶⁾	Designation	Diamete	er	Designation	045	065	085	110	145	175	210	280	
	Without throug	gh drive													0000
	82-2 (A)	8	A1	5/8 in	9T 16/32DP	S2	0	0		0	0	0	-	_	A1S2
				3/4 in	11T 16/32DP	S3	0	0	0	\bullet	-	-	•	_	A1S3
		~	A2	5/8 in	9T 16/32DP	S2							-	_	A2S2
				3/4 in	11T 16/32DP	S3		0	I	-	-	-	-	_	A2S3
	101-2 (B)	8	B1	7/8 in	13T 16/32DP	S4	0	\bullet				•	-		B1S4
				1 in	15T 16/32DP	S5	0	О	\bullet	0	\bullet	\bullet	-	_	B1S5
		o-o	B2	7/8 in	13T 16/32DP	S4		\bullet	\bullet	٠		\bullet	-	_	B2S4
				1 in	15T 16/32DP	S5	\bullet						-	_	B2S5
		مە	B5	7/8 in	13T 16/32DP	S4	0	0	О	0	0	0	-	_	B5S4
				1 in	15T 16/32DP	S5	0	О		٠	0	0	-	_	B5S5
0	101-4 (B)	23	B4	7/8 in	13T 16/32DP	S4	0	О	О	О	\bullet	О	-	_	B4S4
8				1 in	15T 16/32DP	S5	0	О	О	О	\bullet	О	-	_	B4S5
	127-2 (C)	8	C1	1 in	15T 16/32DP	S5	-	-	-	-	0	-	-	_	C1S5
				1 1/4 in	14T 12/24DP	S7	0	О	•	•	\bullet	О	О	0	C1S7
		o-o	C2	1 in	15T 16/32DP	S5	-	-	-	-	\bullet	0	-	_	C2S5
				1 1/4 in	14T 12/24DP	S7	\bullet		\bullet						C2S7
				1 3/8 in	21T 16/32DP	V8	-	-	•	-	\bullet	•	-		C2V8
				1 3/4 in	13T 8/16DP	T1	-	-	-	-	•	•	-	_	C2T1
		ح ^م	C5	1 in	15T 16/32DP	S5	_	-	-	-	0	-	-		C5S5
				1 1/4 in	14T 12/24DP	S7	0	0	О	•	0	О	0	0	C5S7
	127-4 (C)	23	C4	1 1/4 in	14T 12/24DP	S7	-	-	\bullet	•	•	•	-		C4S7
				1 3/8 in	21T 16/32DP	V8	-	-	•	0	-	-	-		C4V8
	152-2 (D)	0-0	D2	1 3/4 in	13T 8/16DP	T1	-	-	-	-	•	0	-	_	D2T1
	152-4 (D)	23	D4	1 3/8 in	21T 16/32DP	V8	-	-	О	\bullet	-	-	-	-	D4V8
				1 3/4 in	13T 8/16DP	T1	-	-	-	-					D4T1
	165-4 (E)	ся С	E4	1 3/4 in	13T 8/16DP	T1	-	-	-	-	0	•	-		E4T1

• = Available O = On request - = Not available

= Preferred program

5) Coupling for splined shaft according to ANSI B92.1a

6) Mounting drillings pattern viewed on through drive with control at top

				-				-			1		. – – –	r	-			·							
A	4V	G								/	40	Α		Ν						A		0		-	
C	1	02	03	04	05	06	07	08	09		10	11	12	13	14	15	16	17	18	19	9 20) 21	22	2	23
	.					,										•			005			475	~		
	Pres	sure	e-rei	er va	ives	(see	oage	54)								02	15 0	165	085	110	145	1/5	210	280	
19	Hig	h-pre	essui	e reli	ef val	ve, di	recto	contro	olled,	fixec	l setti	ng						•	•	•	•	•	•	•	Α
	with	ו low	-pres	ssure	reliet	valve	e, fixe	d set	ting									-	-	-	_	_	_	_	
	Filtr	atior	n boo	ost ci	rcuit	/ ext	ernal	sup	ply (s	ee p	ages	56 to	59)			04	15 0	65	085	110	145	175	210	280	
	Filtr	atior	in tł	ne bo	ost p	ump	suctio	on line	Э									•							S
	Filtr	atior	in th	ne bo	ost p	ump	oress	ure li	ne:																
		Port	s for	exter	nal b	oost	circui	t filtra	ation (F _e a	nd F _a)							•	•	•				•	U
20	-	Filte	r mo	untec	l with	cold	start	valve	7)									•	•	•	٠		•	•	F
		Filte	r moi	unted	with o	cold s	tart v	alve a	nd ele	ectric	c cont	amina	ation i	ndica	tor ⁷⁾			•	ullet	•			0	0	В
	Exte	ernal	supp	ly (on	versi	on wi	thout	integ	rated	boos	st pum	ıp)						•	ullet	•			0	0	Е
	Pres	sure	e ser	nsor												04	15 0	65	085	110	145	175	210	280	
21	Wit	hout	pres	sure	senso	or												•	•	•					0
				,			\ \														=				
	Spe	ed s	enso	or (se	e paç	je 60)									04	15 0	65	085	110	145	175	210	280	
22	Wit	hout	spee	ed se	nsor													•	•	•	•	•	•	•	0
	DS.	Aspe	ed s	senso	r mou	inted	8)									0)	•	ullet	•			\bullet		V
	Star	ndaro	d/s	pecia	al ver	sion																			
	Sta	ndar	d ver	sion																					0
23	Sta	ndar	d ver	sion	with i	nstall	ation	varia	nts, e	. g. T	[port	s aga	inst s	standa	ard of	oen or	clos	sed							Y
	Spe	ecial	versi	on																					S

 \bullet = Available

O = On request - = Not available

= Preferred program

 $_{7)}$ Only for SAE flange ports A and B, on left side (45°)

8) Specify ordering code of sensor acc. to data sheet (DSA - RE 95133) separately and observe the requirements on the electronics

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids) and RE 90222 (HFD hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The variable pump A4VG is not suitable for operation with HFA, HFB and HFC hydraulic fluids. If HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed. Please contact us.

Selection diagram

Viscosity and temperature of hydraulic fluid

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °F (X °C), an operating temperature of 140 °F (60 °C) is set in the circuit. In the optimum operating viscosity range (v_{opt} , shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature. At no point of the component may the temperature be higher than 240 °F (115 °C). The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, please contact us.

	Viscosity [SUS (mm²/s)]	Temperature	Comment
Transport and storage at ambient temperature		$\begin{array}{l} T_{min} \geq -58 \ ^{o}\text{F} \ (-50 \ ^{o}\text{C}) \\ T_{opt} = +41 \ ^{o}\text{F} \ to \ +68 \ ^{o}\text{F} \\ (+5 \ ^{o}\text{C} \ to \ +20 \ ^{o}\text{C}) \end{array}$	factory preservation: up to 12 months with standard, up to 24 months with long-term
(Cold) start-up ¹⁾	$v_{max} = 7400$ (1600)	T _{St} ≥ -40 °F (-40 °C)	$t\leq$ 3 min, without load (p \leq 725 psi (50 bar)), n \leq 1000 rpm
Permissible temperatu	re difference	$\Delta T \le 45 \ ^{\circ}F$ (25 $^{\circ}C$)	between axial piston unit and hydraulic fluid
Warm-up phase	v < 7400 to 1850 (1600 to 400)	T = -40 °F to -13 °F (-40 °C to -25 °C)	at $p \leq 0.7$ • $p_{nom},n \leq 0.5$ • n_{nom} and $t \leq 15$ min
Operating phase			
Temperature difference	е	$\Delta T = approx. 10 \ ^{\circ}F (5 \ ^{\circ}C)$	between hydraulic fluid in the bearing and at port T.
Maximum temperature		+240 °F (+115 °C)	in the bearing
		+230 °F (+110 °C)	measured at port T
Continuous operation	v = 1850 to 47 (400 to 10) $v_{opt} = 170 \text{ to } 74$ (26 to 16)	T = -13 °F to +195 °F (-25 °C to +90 °C)	measured at port T, no restriction within the permissible data
Chart tarma an anation			management of a set T t < 2 min a < 0.2 s a
Snort-term operation	$v_{\rm min} \ge 32$ (7)	$I_{max} = +230$ °F (+110 °C)	measured at port 1, t < 3 min, $p < 0.3 \cdot p_{nom}$
FKM shaft seal ¹⁾		T ≤ +240 °F (+115 °C)	see page 7

 At temperatures below -13 °F (-25 °C), an NBR shaft seal is required (permissible temperature range: -40 °F to +195 °F (-40 °C to +90 °C)).

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

Depending on the system and the application, for the A4VG, we recommend

Filter cartridges $\beta_{20} \ge 100$.

With an increasing differential pressure at the filter cartridges, the β value must not deteriorate.

At very high hydraulic fluid temperatures 195 °F to maximum 240 °F (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

If the above classes cannot be achieved, please contact us. For notes on filtration types, see page 56.

Shaft seal

Permissible pressure loading

The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure p_G). The mean differential pressure of 30 psi (2 bar) between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 145 psi (10 bar) are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

These values are valid for an ambient pressure $p_{abs} = 15 \text{ psi} (1 \text{ bar}).$

Temperature range

The FKM shaft seal may be used for case drain temperatures from -13 $^{\circ}$ F to +240 $^{\circ}$ F (-25 $^{\circ}$ C to +115 $^{\circ}$ C).

Note

For application cases below -13 °F (-25 °C), an NBR shaft seal is required (permissible temperature range: -40 °F to +195 °F (-40 °C to +90 °C)).

State NBR shaft seal in plain text when ordering. Please contact us.

Operating pressure range

(operating with mineral oil)

Pressure at service line port A or B

Nominal pressure pnom _____ 6500 psi (450 bar) absolute

Maximum pressure pmax	7250 psi (500 bar) absolute
Single operating period _	10 s
Total operating period	300 h

Minimum pressure

(high-pressure side) _____ 365 psi (25 bar) absolute

Minimum pressure

(low-pressure side) _____ 145 psi (10 bar) above p_G (boost pressure setting must be higher, depending on system)

Rate of pressure change R_{A max} _ 130000 psi/s (9000 bar/s)

Boost pump

Pressure at suction port S

Continuous $p_{S \min}$ (v \leq 140 SUS)	$_$ 2 12 psi absolute
$((v \le 30 \text{ mm}^2/\text{s}))$	$_$ \geq 0.8 bar absolute)
Short-term, on cold start	
(t < 3 min)	\geq 7.5 psi (0.5 bar) absolute
Maximum p _{S max}	\leq 75 psi (5 bar) absolute
Nominal pressure pSp nom	365 psi (25 bar) absolute

Maximum pressure p_{Sp max} _____ 580 psi (40 bar) absolute

Control pressure

To ensure the function of the control, the following control pressure is required depending on the speed and operating pressure (measuring point, port P_S):

For controls EP, HW and HP Minimum control pressure

 $p_{St min}$ (at n = 2000 rpm) _____ 290 psi (20 bar) above p_G

For controls DA, HT, EV, EZ

Note

Values for other hydraulic fluids, please contact us.

 $p_G = case pressure$

Definition

Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure pmax

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)

Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

Minimum pressure (low-pressure side)

Minimum pressure at the low-pressure side (A or B), which is required in order to prevent damage to the axial piston unit.

Rate of pressure change R_A

Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Time t

Total operating period = $t_1 + t_2 + ... + t_n$

Tab	le of	f va	lues	(theoretical	values,	without	efficiency	levels and	l tolerances;	values	rounded)
-----	-------	------	------	--------------	---------	---------	------------	------------	---------------	--------	----------

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
variable pump cm^3 45.365.285.4110.4145.3175.4210.6280.3boost pump (at p = 290 psi (20 bar)) $V_{g Sp}$ in^3 0.670.881.161.501.952.382.813.66 cm^3 1114.51924.532394660Standard rotary group
$\frac{1}{10000000000000000000000000000000000$
Standard rotary group 300 11 14.5 19 24.5 32 39 46 60
Standard rotary group
Speed ¹⁾
maximum at V _{g max} n _{nom S} rpm 4300 3800 3300 3150 2850 2650 2500 2400
at $\Delta p \ge 580 \text{ psi}$ (40 bar) (t < 15 s) n _{max 40} rpm 4500 4000 3500 3350 3000 2800 2650 2550
minimum n _{min} rpm 500 500 500 500 500 500 500 500 500
Flow q _v gpm 51.5 65.5 74.5 91.9 109.4 122.7 139.2 177.8
at n _{nom S} and V _{a max} L/min 195 248 282 348 414 465 527 673
Power ²⁾ $\Delta p = 6250 \text{ psi}$ P hp 188 239 271 334 398 447 506 646
at $n_{nom S}$, $V_{q max}$ and $\Delta p = 430$ bar kW 140 178 202 249 297 333 377 482
High-speed rotary group
Speed ¹⁾
maximum at V _{g max} n _{nom H} rpm – – – 3400 3050 3000 – –
at $\Delta p \ge 580 \text{ psi}$ (40 bar) (t < 15 s) $n_{max 40} \text{ rpm} 3600 3200 3100 $
minimum n _{min} rpm – – – 500 500 500 – –
Flow q _v gpm – – – 99.1 117.0 139.0 – –
at n _{nom H} and V _{g max}
Power ²⁾
at $n_{nom H}$, $V_{g max}$ and $\Delta p = 430$ bar $kW 269 318 377$
Torque ²⁾ $\Delta p = 6250 \text{ psi}$ T lb-ft 229 329 431 558 733 885 1063 1415
at $V_{q max}$ and $\Delta p = 430$ bar Nm 310 446 584 756 994 1200 1441 1918
$\Delta p = 1450 \text{ psi}$ T lb-ft 53 77 100 130 170 206 247 329
$\Delta p = 100 \text{ bar}$ Nm 72 104 136 176 231 279 335 446
Rotary stiffness 1 1/4 S7 c lb-ft/rad 60568 75294
drive shaft kNm/rad 82.1 102
1 1/2 S9 c lb-ft/rad 69986 97805
kNm/rad 94.8 133
1 3/8 V8 c lb-ft/rad 100167 123593
kNm/rad – – 136 168 – – – –
1 3/4 T1 c lb-ft/rad 122536 4) 182841 193690
kNm/rad 166 ⁴⁾ 248 263
2 T2 c lb-ft/rad 182317 218661 - 294462 34243
kNm/rad – – – 247 296 – 399 464
2 1/4 T3 c lb-ft/rad 273789 349074 42139
kNm/rad 371 473 571
Moment of inertia for rotary group J _{GR} lb-ft ² 0.1139 0.2112 0.3322 0.5173 0.7831 1.3526 1.4998 2.3137
kgm ² 0.0048 0.0089 0.014 0.0218 0.0330 0.0570 0.0632 0.0975
Maximum angular acceleration ³⁾ α rad/s ² 28000 22000 18000 14500 12000 10000 8000 5000
Case volume V gal 0.37 0.40 0.61 0.66 0.87 0.82 1.29 1.43
L 1.4 1.5 2.3 2.5 3.3 3.1 4.9 5.4
Mass approx. (without through drive) m lbs 121 128 170 194 234 254 335 353
kg 55 58 77 88 106 115 152 160

1) The values are valid: - for the optimum viscosity range from $v_{opt} = 167.04$ to 74.24 SUS (36 to 16 mm²/s)

- with hydraulic fluid based on mineral oils

2) Without boost pump

3) The data are valid for values between the minimum required and maximum permissible speed. Valid for external excitation (e. g. engine 2 to 8 times rotary frequency; cardan shaft twice the rotary frequency). The limit value applies for a single pump only. The load capacity of the connection parts must be considered.

4) On request

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. We recommend testing the loads by means of experiment or calculation / simulation and comparison with the permissible values.

Permissible radial and axial forces of the drive shafts

Size	NG		45	45	65	65	85	85	
Drive shaft		in	1 1/4	1 1/2	1 1/4	1 1/2	1 3/8	1 3/4	
Maximum radial force	F _{q max}	lb	781	668	1231	1050	1515	1204	
at distance a		Ν	3474	2970	5474	4670	6740	5356	
	а	in	0.94	1.06	0.94	1.06	0.94	1.32	
		mm	24	27	24	27	24	33.5	
Maximum axial force	+ F _{ax max}	lb	785	785	967	967	1323	1323	
₅+→⊣ि		Ν	3490	3490	4300	4300	5885	5885	
	- F _{ax max}	lb	519	519	607	607	835	835	
		Ν	2310	2310	2700	2700	3715	3715	
Size	NG		110	110	110	145	145	175	175
Drive shaft		in	1 3/8	1 3/4	2	1 3/4	2	1 3/4	2 1/4
Maximum radial force	F _{q max}	lb	2141	1682	1472	2077	1818	2282	1819
at distance a		Ν	9524	7483	6548	9241	8086	10151	8090
(irom shart collar)	а	in	0.94	1.32	1.57	1.32	1.57	1.32	1.57
		mm	24	33.5	40	33.5	40	33.5	40
Maximum axial force	+ F _{ax max}	lb	1417	1417	1417	1520	1520	1630	1630
╴╺╴┙┙╢		Ν	6305	6305	6305	6763	6763	7252	7252
	- F _{ax max}	lb	921	921	921	997	997	1067	1067
		Ν	4095	4095	4095	4437	4437	4748	4748
Size	NG		210	210	280	280			
Drive shaft		in	2	2 1/4	2	2 1/4			
Maximum radial force	F _{q max}	lb	2514	2261	3274	2980			
at distance a		Ν	11185	10059	14562	13256			
(irom shart collar)	а	in	1.57	1.57	1.57	1.57			
→		mm	40	40	40	40			
Maximum axial force	+ F _{ax max}	lb	1745	1745	1900	1900			
╒┈┾┯╼╢╟		N	7760	7760	8450	8450			
	- F _{ax max}	lb	1133	1133	1158	1158			
		Ν	5040	5040	5150	5150			

Note

Special requirements apply in the case of belt drive and cardan shaft. Please contact us.

Determining the operating characteristics

Flow	$q_{v} =$	$V_g \bullet n \bullet \eta_v$	[gpm]	$\begin{pmatrix} V_g \bullet n \bullet \eta_v \\ \end{bmatrix}$ [L/min]	V_{g}	= Displacement per revolution in in ³ (cm ³)
		231		\ 1000 /	Δp	= Differential pressure in psi (bar)
Torque	т =	V _g •∆p	[lb-ft]	$\left(\begin{array}{c} V_{g} \cdot \Delta p \end{array} \right)$ [Nm]	n	= Speed in rpm
		$24 \bullet \pi \bullet \eta_{mh}$		\ 20 • π • η _{mh} /	η_{v}	= Volumetric efficiency
Power	P =	$2\pi \cdot T \cdot n =$	q _v • ∆p[hp]	$\left(\underbrace{2\pi \cdot T \cdot n}_{$	η_{mh}	= Mechanical-hydraulic efficiency
		33000	1714 • η _t	$60000 600 \cdot \eta_t$	η_t	= Total efficiency ($\eta_t = \eta_v \bullet \eta_{mh}$)

Permissible input and through-drive torques

Size		NG		45	65	85	110	145	175	210	280
Torque at V _{g max} and	$\Delta p = 6250 \text{ psi}^{1)}$	Т	lb-ft	229	330	432	559	735	887	1063	1415
	$\Delta p = 430 \text{ bar}^{1)}$	_	Nm	310	446	584	756	994	1200	1441	1918
Input torque at drive	e shaft, maximum ²⁾										
S7	1 1/4 in	T_{Emax}	lb-ft	444	444	-	-	-	-	-	-
			Nm	602	602	-	-	-	-	-	-
S9	1 1/2 in	$T_{E max}$	lb-ft	830	830	-	-	-	-	-	-
			Nm	1125	1125	-	-	-	-	-	-
V8	1 3/8 in	T _{E max}	lb-ft	-	-	715	715	-	-	-	-
			Nm	-	-	970	970	-	-	-	-
T1	1 3/4 in	T _{E max}	lb-ft	-	-	1210	1210	1210	1210	-	-
			Nm	-	-	1640	1640	1640	1640	-	-
T2	2 in	T _{E max}	lb-ft	-	_	-	1969	1969	-	1969	1969
			Nm	-	_	-	2670	2670	-	2670	2670
ТЗ	2 1/4 in	T _{E max}	lb-ft	-	_	-	_	-	3002	3002	3002
			Nm	-	-	-	_	-	4070	4070	4070
Maximum through-drive torque T _{D max} Ib-		lb-ft	384	384	689	689	1066	1066	1948	1948	
			Nm	521	521	934	934	1445	1445	2641	2641

1) Efficiency not considered

2) For drive shafts without radial force

Torque distribution

 T_E and T_D consists as follows: $T_E = T_1 + T_2 + T_3$ $T_D = T_2 + T_3$ $T_E < T_{E max}$ $T_D < T_{D max}$

HP - Proportional control hydraulic, pilot-pressure related

The output flow of the pump is infinitely variable between 0 to 100 %, proportional to the difference in pilot pressure applied to the two control ports (Y_1 and Y_2).

The pilot signal, coming from an external source, is a pressure signal. Flow is negligible, as the pilot signal acts only on the spool of the control valve.

This valve spool then directs control oil into and out of the stroking cylinder to adjust pump displacement as required.

A feedback lever, connected to the stroking piston maintains the pump flow for any given pilot signal within the control range.

If the pump is also equipped with a DA control valve (see page 17), automotive operation is possible for travel drives.

 $V_g = Displacement at p_{St}$

 $V_{g max} = Displacement at p_{St} = 260 psi (18 bar)$

Pilot signal $p_{St} = 90$ to 260 psi (6 to 18 bar) (at port Y₁, Y₂)

Beginning of control at 90 psi (6 bar)

End of control at 260 psi (18 bar) (maximum displacement V_{g max})

Note

In the neutral position, the HP control module must be vented to reservoir via the external pilot control device.

Correlation

Direction of rotation - Control - Flow direction

		Pilot signal	Control pressure	Flow direction	Operating pressure
of		Y ₁	X ₁	B to A	M _A
ы Б	ş	Y ₂	X ₂	A to B	M _B
ecti	×	Y ₁	X ₁	A to B	M _B
<u>a</u> 5	С С	Y ₂	X ₂	B to A	M _A

Note

The spring return feature in the control module is not a safety device

The control module can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.

Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

HW - Proportional control hydraulic, mechanical servo

The output flow of the pump is infinitely variable between 0 to 100 %, proportional to the swivel angle of the control lever between 0° and $\pm 29^{\circ}$ from the spring centered zero flow position.

A feedback lever, connected to the stroking piston maintains the pump flow for any given position of the control lever between 0° and 29° .

If the pump is also equipped with a DA control valve (see page 17), automotive operation is possible for travel drives.

Swivel angle $\boldsymbol{\beta}$ at the control lever for pump displacement change:

Beginning of control at $\beta = 3^{\circ}$

End of control at $\beta = 29^{\circ}$ (maximum displacement V_{g max})

Mechanical stop for β : ±40°

The maximum required torque at the lever is 15 lb-in (170 Ncm). To prevent damage to the HW control module, a positive mechanical stop must be provided for the HW control lever.

Note

Spring centering enables the pump, depending on pressure and speed, to move automatically to the neutral position ($V_g = 0$) as soon as there is no longer any torque on the control lever of the HW control module (regardless of deflection angle).

Variation: neutral position switch

The switch contact in the neutral position switch is closed when the control lever on the HW control module is in its neutral position. The switch opens when the control lever is moved out of neutral in either direction.

Thus, the neutral position switch provides a monitoring function for drive units that require the pump to be in the neutral position during certain operating conditions (e. g. starting diesel engines).

Technical data, ne	eutral positio	n switch
--------------------	----------------	----------

Load capacity	20 A (continuous), without switching operating		
Switching capacity	15 A / 32 V (resistive load)		
	4 A / 32 V (inductive load)		
Connector design	DEUTSCH DT04-2P-EP04 (mating connector, see page 60)		

Correlation Direction of rotation - Control - Flow direction

		Lever direction	Control pressure	Flow direction	Operating pressure
of		a	X ₁	B to A	M _A
Б с	ş	b	X ₂	A to B	M _B
ecti	×	a	X ₁	A to B	M _B
5 Di	ő	b	X ₂	B to A	M _A

EP - Proportional control electric

The output flow of the pump is infinitely variable between 0 to 100 %, proportional to the electrical current supplied to solenoid a or b.

The electrical energy is converted into a force acting on the spool of the control valve.

This valve spool then directs control oil into and out of the stroking cylinder to adjust pump displacement as required.

A feedback lever, connected to the stroking piston maintains the pump flow for any given current within the control range.

If the pump is also equipped with a DA control valve (see page 17), automotive operation is possible for travel drives.

Standard

Proportional solenoid without manual override.

On request

Proportional solenoid with manual override and spring return.

Technical data, solenoid

	EP1	EP2			
Voltage	12 V (±20 %)	24 V (±20 %)			
Control current					
Beginning of control at $V_g = 0$	400 mA	200 mA			
End of control at $V_{g max}$	1200 mA	600 mA			
Limiting current	1.54 A	0.77 A			
Nominal resistance (at 68 °F (20 °C))	5.5 Ω	22.7 Ω			
Dither frequency	100 Hz	100 Hz			
Duty cycle	100 %	100 %			
Type of protection see connector design page 60					

The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

- BODAS controller RC

	RE 95200
	RE 95201
	RE 95202
RE 95203,	RE 95204
_	
	_ RE 95203,

- Analog amplifier RA_____ RE 95230

Further information can also be found on the Internet at www.boschrexroth.com/mobile-electronics.

Note

The spring return feature in the control module is not a safety device

The control module can stick in an undefined position by internal contamination (contaminated hydraulic fluid, abrasion or residual contamination from system components). As a result, the control will no longer respond correctly to the operator's commands.

Check whether the application on your machine requires additional safety measures, in order to bring the driven actuator into a controlled and safe position (immediate stop). If necessary, make sure these are properly implemented.

Correlation

Direction of rotation - Control - Flow direction

			Actuation of solenoid	Control pressure	Flow direction	Operating pressure
of			a	X ₁	B to A	M _A
Б с	ş	b	X ₂	A to B	M _B	
ecti	atic	N	а	X ₁	A to B	M _B
g Q	С С	b	X ₂	B to A	M _A	

EZ - Two-point control electric

By energizing either switching solenoid a or b, internal control pressure is connected directly to the stroking piston and the pump swivels to maximum displacement. With the EZ control, pump flow is switchable between $V_g = 0$ and $V_{g max}$. Flow direction is determined by which solenoid is energized.

Technical data, solenoid

	EZ1	EZ2
Voltage	12 V (±20 %)	24 V (±20 %)
Neutral position $V_g = 0$	de-energized	de-energized
Displacement V _{g max}	energized	energized
Nominal resistance (at 68 °F (20 °C))	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Minimum required current	1.32 A	0.67 A
Duty cycle	100 %	100 %
Type of protection see connect	tor design page	60

Standard

Switching solenoid without manual override.

On request

Switching solenoid with manual override and spring return.

Correlation

Direction of rotation - Control - Flow direction

		Actuation of solenoid	Control pressure	Flow direction	Operating pressure
7		a	X ₂	A to B	M _B
o u u	Š	b	X ₁	B to A	M _A
recti	2	а	X ₂	B to A	M _A
Ξţ	S	b	X ₁	A to B	M _B

DA - Automatic control speed-related

The DA closed loop control is an engine speed-dependent system for travel drives. The built-in DA control valve generates a control pressure which is proportional to pump (engine) drive speed. This control pressure is directed to the stroking cylinder of the pump by a solenoid actuated 4/3-way directional valve. The pump displacement is infinitely variable in each flow direction and is influenced by both pump drive speed and system pressure. The flow direction (e. g. machine moving forward or backward) is determined by either solenoid a or b being activated.

Increasing pump drive speed generates a higher control pressure from the DA control valve, with a subsequent increase in pump flow.

Depending on the selected pump operating characteristics, increasing system pressure (e. g. machine load) causes the pump to swivel back towards a smaller displacement. Engine overload protection (anti-stall) is achieved by the combination of this pressure-related pump de-stroking, and the reduction of control pressure as the engine speed drops.

Any additional power requirement, e. g. for hydraulic functions from attachments, could cause the engine speed to drop further. This would cause a further reduction in control pressure and thus of pump displacement. Automatic power distribution and full exploitation of the available power are achieved in this way, both for the travel drive and for the implement hydraulics, with priority given to the implement hydraulics.

Various override options are available for the DA control function to allow controlled operation of the implement hydraulics with high rpm at reduced vehicle speed.

The DA control valve can also be used in pumps with EP, HW, HT and HP control module to protect the combustion engine against overload.

DA closed loop control is only suitable for certain types of drive systems and requires review of the engine and vehicle parameters to ensure that the pump is used correctly and that machine operation is safe and efficient. We recommend that all DA applications be reviewed by a Bosch Rexroth application engineer.

Technical data, solenoid

	DA1	DA2
Voltage	12 V (±20 %)	24 V (±20 %)
Neutral position $V_g = 0$	de-energized	de-energized
Displacement V _{g max}	energized	energized
Nominal resistance (at 68 °F (20 °C))	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Minimum required current	1.32 A	0.67 A
Duty cycle	100 %	100 %
Type of protection see connect	or design page	60

Standard

Switching solenoid without manual override.

On request

Switching solenoid with manual override and spring return.

Correlation

Direction of rotation - Control - Flow direction

		Actuation of solenoid	Control pressure	Flow direction	Operating pressure
of		а	X ₂	A to B	M _B
ection e	ş	b	X ₁	B to A	M _A
	2	а	X ₂	B to A	M _A
<u>i</u> g	S	b	X ₁	A to B	M _B

DA - Automatic control speed-related

Function and control of DA control valves

DA control valve fixed setting (1)

Control pressure is generated in relation to drive speed. When ordering, state in plain text: start of control (set at factory).

Schematic

DA control valve mechanically adjustable with position lever (2, 3)

Control pressure is generated in relation to drive speed. When ordering, state in plain text: start of control (set at factory).

Any reduction of the control pressure possible, independently of the drive speed, through mechanical actuation of the position lever (inch function).

The maximum permissible actuation torque at the position lever is $T_{max} = 3$ lb-ft (4 Nm).

Maximum angle of rotation 70°, lever position: any.

Version 2

Actuating direction of the position lever: right

Version 3

Actuating direction of the position lever: left

Schematic

DA control valve fixed setting and braking inch valve mounted (4, 5) (only for pumps with DA control module)

Version with pressure reducing valve

Any reduction of the control pressure possible, independently of the drive speed via hydraulic control (port Z).

Version 4

Control at port Z by means of brake fluid according to ISO 4925 (**no** mineral oil), from the vehicle braking system (hydraulically linked with the service brake).

Version 5

Control at port Z by means of brake fluid based on mineral oil.

Schematic

DA control valve fixed setting, ports for pilot control device as inch valve (6)

Any reduction of the control pressure possible, independently of the drive speed is achieved by the mechanical actuation of the pilot control device.

The pilot control device is installed separately from the pump (for example in the driver's cabin) and connected to the pump by two hydraulic control lines via ports P_{S} and Y_{ST} .

A suitable pilot control device must be ordered separately and is not included in the delivery contents.

Detailed information is available from our sales department and on the Internet at www.boschrexroth.com/da-control. Use our computer program to work out the input design that meets your needs. All DA applications must be approved by a Bosch Rexroth application engineer.

HT - Hydraulic control, direct controlled

With the direct hydraulic control (HT), the output flow of the pump is controlled by a hydraulic control pressure, applied directly to the stroking piston through either port X_1 or X_2 .

Schematic

Flow direction is determined by which control pressure port is pressurized (refer to table below).

Pump displacement is infinitely variable and proportional to the applied control pressure, but is also influenced by system pressure and pump drive speed.

In order to use the optional built-in pressure cut-off valve, port Y_{HT} must be used as the control pressure source for the selected control module. See page 53 for a description of the pressure cut-off function.

Maximum permissible control pressure: 580 psi (40 bar)

Use of the HT control requires a review of the engine and vehicle parameters to ensure that the pump is set up correctly. We recommend that all HT applications be reviewed by a Bosch Rexroth application engineer.

If the pump is also equipped with a DA control valve (see page 17), automotive operation is possible for travel drives.

Correlation Direction of rotation - Control - Flow direction

		Control	Flow	Operating
		pressure	direction	pressure
of		X ₁	B to A	M _A
uoi u	ş	X ₂	A to B	M _B
ection	2	X ₁	A to B	M _B
<u>i</u> g	ő	X ₂	B to A	M _A

EV - Electric control, direct controlled

With the direct electric control (EV), the output flow of the pump is infinitely variable between 0 to 100 %, controlled by the control pressure of the pressure reducing valve. This control pressure level is proportional to the electric current, applied to the solenoid of the pressure reducing valve. This control pressure is then connected directly to the stroking cylinder of the pump by energizing either switching solenoid a or b on the EV control module, which determines the direction of the pump flow. The resulting pump displacement at a certain control pressure is also influenced by pump drive speed and operating pressure.

Technical data, pressure reducing valve				
	EV1	EV2		
Voltage	12 V	24 V		
Control current				
Beginning of control at $V_g = 0$	515 mA	255 mA		
End of control at $V_{g max}$	990 mA	495 mA		
Limiting current	1.54 A	0.77 A		
Nominal resistance (at 68 °F (20 °C))	5.5 Ω	22.7 Ω		
Dither frequency	100 Hz	100 Hz		
Duty cycle	100 %	100 %		
Type of protection see connector design page 60				

Depending on the operating point, the specified values may vary slightly.

The following electronic controllers and amplifiers are available for controlling the proportional solenoids:

– BODAS controller RC

Series 20			RE 95200
Series 21			RE 95201
Series 22			RE 95202
Series 30		RE 95203,	RE 95204
and applic	ation software		

- Analog amplifier RA______ RE 95230

Further information can also be found on the Internet at www.boschrexroth.com/mobile-electronics.

Technical data, solenoid

	EV1	EV2
Voltage	12 V (±20 %)	24 V (±20 %)
Neutral position $V_g = 0$	de-energized	de-energized
Displacement V _g	energized	energized
Nominal resistance (at 68 °F (20 °C)	5.5 Ω	21.7 Ω
Nominal power	26.2 W	26.5 W
Minimum required current	1.32 A	0.67 A
Duty cycle	100 %	100 %
Type of protection see connect	or design page	60

Standard

Switching solenoid without manual override.

On request

Switching solenoid with manual override and spring return.

Cor	relati	on		
		-		

Direction of rotation - Control - Flow direction

			Actuation of solenoid	Control pressure	Flow direction	Operating pressure
of			a	X ₂	A to B	M _B
δĘ	ş	b	X ₁	B to A	M _A	
ecti	atic	N	a	X ₂	B to A	M _A
Ō	ē	S	b	X ₁	A to B	M _B

EP – Proportional control electric

SAE flange ports A and B, 45° left (viewed on drive shaft)¹⁾

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

1) For SAE flange ports A and B, 45° right (viewed on drive shaft), the complete case and thus the dimensions are mirrored.

2) Center of gravity

3) With mounting flange B2, the length dimensions are reduced by 0.19 inch (4.9 mm)

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [psi (bar)] ⁴⁾	State
A, B ¹⁰⁾	Service line	SAE J518 ⁵⁾	3/4 in	7250 (500)	0
	Fastening thread A/B, screw grade 8 with hardened washer	ASME B1.1	3/8-16UNC; 0.83 (21) deep		
S	Suction line	ISO 11926 ⁹⁾	1 5/16-12UN-2B; 0.79 (20) deep	75 (5)	O ⁶⁾
T ₁	Drain line	ISO 11926 ⁹⁾	1 1/16-12UN-2B; 0.79 (20) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926 ⁹⁾	1 1/16-12UN-2B; 0.79 (20) deep	45 (3)	X ⁷⁾
R	Air bleed	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃ , X ₄ ⁸⁾	Stroking chamber pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
G	Boost pressure	ISO 11926 ⁹⁾	7/8-14UNF-2B; 0.67 (17) deep	580 (40)	Х
Ps	Pilot pressure, inlet	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	Х
Ps	Pilot pressure, inlet (DA6 only)	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	0
Y _{ST}	Pilot pressure, outlet	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
Y _{ST}	Pilot pressure, outlet (DA6 only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
M _A , M _B	Measuring pressure A, B	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
M _H	Measuring high pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
$F_{a}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	1 1/16-12UN-2B; 0.79 (20) deep	580 (40)	Х
$F_{a1}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	No specification	580 (40)	Х
F _{a2} ¹¹⁾	Boost pressure	ISO 119269)	No specification	580 (40)	X
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Z	Inch signal (DA4 and 5 only)	ISO 119269)	3/8-24UNF-2B; 0.39 (10) deep	580 (40)	0

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Observe the general instructions on page 66 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Only dimensions according to SAE J518.

6) Plugged with external supply option (Code E)

7) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 63 and 64).

8) Optional, see page 55

9) The spot face can be deeper than specified in the appropriate standard.

10) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.11) No standard ports, subject to change, please contact before use

O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

DA - control valves

Version 2, 3 - mechanically adjustable with position lever

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

EP – Proportional control electric

SAE flange ports A and B, 45° left (viewed on drive shaft)¹⁾

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

For SAE flange ports A and B, 45° right (viewed on drive shaft), the complete case and thus the dimensions are mirrored.
 Center of gravity

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [psi (bar)] ⁴⁾	State
A, B ¹⁰⁾	Service line	SAE J518 ⁵⁾	3/4 in	7250 (500)	0
	Fastening thread A/B, screw grade 8 with hardened washer	ASME B1.1	3/8-16UNC; 0.83 (21) deep		
S	Suction line	ISO 11926 ⁹⁾	1 5/16-12UN-2B; 0.79 (20) deep	75 (5)	O ⁶⁾
T ₁	Drain line	ISO 11926 ⁹⁾	1 1/16-12UN-2B; 0.79 (20) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926 ⁹⁾	1 1/16-12UN-2B; 0.79 (20) deep	45 (3)	X ⁷⁾
R	Air bleed	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃ , X ₄ ⁸⁾	Stroking chamber pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
G	Boost pressure	ISO 11926 ⁹⁾	7/8-14UNF-2B; 0.67 (17) deep	580 (40)	Х
Ps	Pilot pressure, inlet	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	Х
Ps	Pilot pressure, inlet (DA6 only)	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	0
Y _{ST}	Pilot pressure, outlet	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
Y _{ST}	Pilot pressure, outlet (DA6 only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
M_A, M_B	Measuring pressure A, B	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
M _H	Measuring high pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
$F_{a}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	1 1/16-12UN-2B; 0.79 (20) deep	580 (40)	Х
$F_{a1}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	No specification	580 (40)	Х
$F_{a2}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	No specification	580 (40)	Х
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Z	Inch signal (DA4 and 5 only)	ISO 11926 ⁹⁾	3/8-24UNF-2B; 0.39 (10) deep	580 (40)	0

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Observe the general instructions on page 66 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Only dimensions according to SAE J518.

6) Plugged with external supply option (Code E)

7) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 63 and 64).

8) Optional, see page 55

9) The spot face can be deeper than specified in the appropriate standard.

10) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells. 11) No standard ports, subject to change, please contact before use

O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

DA - control valves

Version 1 - fixed setting

Version 2, 3 - mechanically adjustable with position lever

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [psi (bar)] ⁴⁾	State
A, B ¹⁰⁾	Service line	SAE J518 ⁵⁾	1 in	7250 (500)	0
	Fastening thread A/B, screw grade 8 with hardened washer	ASME B1.1	7/16-14UNC; 0.87 (22) deep		
S	Suction line	ISO 11926 ⁹⁾	1 5/8-12UN-2B; 0.79 (20) deep	75 (5)	O ⁶⁾
T ₁	Drain line	ISO 11926 ⁹⁾	1 5/16-12UN-2B; 0.79 (20) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926 ⁹⁾	1 5/16-12UN-2B; 0.79 (20) deep	45 (3)	X ⁷⁾
R	Air bleed	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃ , X ₄ ⁸⁾	Stroking chamber pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
G	Boost pressure	ISO 11926 ⁹⁾	7/8-14UNF-2B; 0.67 (17) deep	580 (40)	Х
Ps	Pilot pressure, inlet	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	Х
Ps	Pilot pressure, inlet (DA6 only)	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	0
Y _{ST}	Pilot pressure, outlet	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
Y _{ST}	Pilot pressure, outlet (DA6 only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
M_A, M_B	Measuring pressure A, B	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
M _H	Measuring high pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
$F_{a}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	1 5/16-12UN-2B; 0.79 (20) deep	580 (40)	Х
$F_{a1}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	No specification	580 (40)	Х
$F_{a2}^{11)}$	Boost pressure	ISO 119269)	No specification	580 (40)	Х
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Z	Inch signal (DA4 and 5 only)	ISO 11926 ⁹⁾	3/8-24UNF-2B; 0.39 (10) deep	580 (40)	0

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Observe the general instructions on page 66 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Only dimensions according to SAE J518.

6) Plugged with external supply option (Code E)

7) Depending on installation position, T1 or T2 must be connected (see also installation instructions on pages 63 and 64).

8) Optional, see page 55

9) The spot face can be deeper than specified in the appropriate standard.

10) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells. 11) No standard ports, subject to change, please contact before use

O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Dimensions size 85

ΗP

Proportional control hydraulic, pilot-pressure related

ΗT

Hydraulic control, direct controlled

EV

Electric control, direct controlled

нพ

Two-point control electric

DA – control valves

Version 1 - fixed setting

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Dimensions size 110

Drive shafts

Ports

Designation	ation Port for Standard		Size ³⁾	Maximum pressure [psi (bar)] ⁴⁾	State
A, B ¹⁰⁾	Service line	SAE J5185)	1 in	7250 (500)	0
	Fastening thread A/B, screw grade 8 with hardened washer	ASME B1.1	7/16-14UNC; 0.87 (22) deep		
S	Suction line	ISO 11926 ⁹⁾	1 5/8-12UN-2B; 0.79 (20) deep	75 (5)	O ⁶⁾
T ₁	Drain line	ISO 11926 ⁹⁾	1 5/16-12UN-2B; 0.79 (20) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926 ⁹⁾	1 5/16-12UN-2B; 0.79 (20) deep	45 (3)	X ⁷⁾
R	Air bleed	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃ , X ₄ ⁸⁾	Stroking chamber pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
G	Boost pressure	ISO 11926 ⁹⁾	7/8-14UNF-2B; 0.67 (17) deep	580 (40)	Х
Ps	Pilot pressure, inlet	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	Х
Ps	Pilot pressure, inlet (DA6 only)	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	0
Y _{ST}	Pilot pressure, outlet	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
Y _{ST}	Pilot pressure, outlet (DA6 only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
M_A, M_B	Measuring pressure A, B	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
M _H	Measuring high pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
$F_{a}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	1 5/16-12UN-2B; 0.79 (20) deep	580 (40)	Х
$F_{a1}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	No specification	580 (40)	Х
$F_{a2}^{11)}$	Boost pressure	ISO 119269)	No specification	580 (40)	Х
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Z	Inch signal (DA4 and 5 only)	ISO 11926 ⁹⁾	3/8-24UNF-2B; 0.39 (10) deep	580 (40)	0

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Observe the general instructions on page 66 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Only dimensions according to SAE J518.

6) Plugged with external supply option (Code E)

7) Depending on installation position, T1 or T2 must be connected (see also installation instructions on pages 63 and 64).

8) Optional, see page 55

9) The spot face can be deeper than specified in the appropriate standard.

10) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells. 11) No standard ports, subject to change, please contact before use

O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Dimensions size 110

ΗP

Proportional control hydraulic, pilot-pressure related

ΗТ

Hydraulic control, direct controlled

EV

Electric control, direct controlled

HW

Proportional control hydraulic, mechanical servo

ΕZ

Two-point control electric

DA – control valves

Version 1 – fixed setting

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

EP – Proportional control electric

SAE flange ports A and B, 45° left (viewed on drive shaft)¹⁾

Before finalizing your design, request a binding

installation drawing. Dimensions in inch (mm).

Dimensions size 145

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [psi (bar)] ⁴⁾	State
A, B ¹⁰⁾	Service line	SAE J5185)	1 1/4 in	7250 (500)	0
	Fastening thread A/B, screw grade 8 with hardened washer	ASME B1.1	1/2-13UNC; 0.75 (19) deep		
S	Suction line	ISO 11926 ⁹⁾	1 7/8-12UN-2B; 0.79 (20) deep	75 (5)	O ⁶⁾
T ₁	Drain line	ISO 11926 ⁹⁾	1 5/8-12UN-2B; 0.77 (19.5) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926 ⁹⁾	1 5/8-12UN-2B; 0.77 (19.5) deep	45 (3)	X ⁷⁾
R	Air bleed	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃ , X ₄ ⁸⁾	Stroking chamber pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
G	Boost pressure	ISO 11926 ⁹⁾	7/8-14UNF-2B; 0.67 (17) deep	580 (40)	Х
Ps	Pilot pressure, inlet	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	Х
Ps	Pilot pressure, inlet (DA6 only)	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	0
Y _{ST}	Pilot pressure, outlet	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
Y _{ST}	Pilot pressure, outlet (DA6 only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
M_A, M_B	Measuring pressure A, B	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
M _H	Measuring high pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
$F_{a}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	1 5/16-12UN-2B; 0.79 (20) deep	580 (40)	Х
$F_{a1}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	No specification	580 (40)	Х
$F_{a2}^{11)}$	Boost pressure	ISO 119269)	No specification	580 (40)	Х
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Z	Inch signal (DA4 and 5 only)	ISO 119269)	3/8-24UNF-2B; 0.39 (10) deep	580 (40)	0

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Observe the general instructions on page 66 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Only dimensions according to SAE J518.

6) Plugged with external supply option (Code E)

7) Depending on installation position, T1 or T2 must be connected (see also installation instructions on pages 63 and 64).

8) Optional, see page 55

9) The spot face can be deeper than specified in the appropriate standard.

10) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells. 11) No standard ports, subject to change, please contact before use

O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Dimensions size 145

ΗP

Proportional control hydraulic, pilot-pressure related

ΗT

Hydraulic control, direct controlled

EV

Electric control, direct controlled

HW

Proportional control hydraulic, mechanical servo

Two-point control electric

DA - control valves

Version 1 – fixed setting

Version 4, 5 - fixed setting and inch valve mounted

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

EP – Proportional control electric

SAE flange ports A and B, 45° left (viewed on drive shaft)1)

For SAE flange ports A and B, 45° right (viewed on drive shaft), the complete case and thus the dimensions are mirrored.
 Center of gravity

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [psi (bar)] ⁴⁾	State
A, B ¹⁰⁾	Service line	SAE J518 ⁵⁾	1 1/4 in	7250 (500)	0
	Fastening thread A/B, screw grade 8 with hardened washer	ASME B1.1	1/2-13UNC; 0.75 (19) deep		
S	Suction line	ISO 11926 ⁹⁾	1 7/8-12UN-2B; 0.79 (20) deep	75 (5)	O ⁶⁾
T ₁	Drain line	ISO 11926 ⁹⁾	1 5/8-12UN-2B; 0.77 (19.5) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926 ⁹⁾	1 5/8-12UN-2B; 0.77 (19.5) deep	45 (3)	X ⁷⁾
R	Air bleed	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
X ₁ , X ₂	Control pressure (upstream of orifice, HT only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
X ₃ , X ₄ ⁸⁾	Stroking chamber pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
G	Boost pressure	ISO 11926 ⁹⁾	7/8-14UNF-2B; 0.67 (17) deep	580 (40)	Х
Ps	Pilot pressure, inlet	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	Х
Ps	Pilot pressure, inlet (DA6 only)	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	0
Y _{ST}	Pilot pressure, outlet	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
Y _{ST}	Pilot pressure, outlet (DA6 only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
M_A, M_B	Measuring pressure A, B	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
M _H	Measuring high pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
$F_{a}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	1 5/16-12UN-2B; 0.79 (20) deep	580 (40)	Х
$F_{a1}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	No specification	580 (40)	Х
$F_{a2}^{11)}$	Boost pressure	ISO 119269)	No specification	580 (40)	Х
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 119269)	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Z	Inch signal (DA4 and 5 only)	ISO 119269)	3/8-24UNF-2B; 0.39 (10) deep	580 (40)	0

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Observe the general instructions on page 66 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Only dimensions according to SAE J518.

6) Plugged with external supply option (Code E)

7) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 63 and 64).

8) Optional, see page 55

9) The spot face can be deeper than specified in the appropriate standard.

10) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.11) No standard ports, subject to change, please contact before use

O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

ΗP

Proportional control hydraulic, pilot-pressure related

ΗT

Hydraulic control, direct controlled

EV

Electric control, direct controlled

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

HW

Proportional control hydraulic, mechanical servo

EZ

Two-point control electric

DA - control valve

Version 1 – fixed setting

Version 4, 5 - fixed setting and inch valve mounted

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

EP – Proportional control electric

SAE flange ports A and B, 45° left (viewed on drive shaft)¹⁾

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

2) Center of gravity

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [psi (bar)] ⁴⁾	State
A, B ¹⁰⁾	Service line	SAE J5185)	1 1/2 in	7250 (500)	0
	Fastening thread A/B, screw grade 8 with hardened washer	ASME B1.1	5/8-11UNC; 1.14 (29) deep		
S	Suction line	SAE J518 ⁵⁾	1 1/2 in	75 (5)	O ⁶⁾
	Fastening thread A/B	ASME B1.1	1/2-13UNC; 0.94 (24) deep		
T ₁	Drain line	ISO 11926 ⁹⁾	1 5/8-12UN-2B; 0.77 (19.5) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926 ⁹⁾	1 5/8-12UN-2B; 0.77 (19.5) deep	45 (3)	X ⁷⁾
R	Air bleed	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
X ₁ , X ₂	Control pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
	(upstream of orifice, HT only)				
X ₃ , X ₄ ⁸⁾	Stroking chamber pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
G	Boost pressure	ISO 11926 ⁹⁾	7/8-14UNF-2B; 0.67 (17) deep	580 (40)	Х
Ps	Pilot pressure, inlet	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	Х
Ps	Pilot pressure, inlet (DA6 only)	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	0
Y _{ST}	Pilot pressure, outlet	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
Y _{ST}	Pilot pressure, outlet (DA6 only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
M _A , M _B	Measuring pressure A, B	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
M _H	Measuring high pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
F _a ¹¹⁾	Boost pressure	ISO 11926 ⁹⁾	1 5/16-12UN-2B; 0.79 (20) deep	580 (40)	Х
$F_{a1}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	No specification	580 (40)	Х
F _{a2} ¹¹⁾	Boost pressure	ISO 11926 ⁹⁾	No specification	580 (40)	Х
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Z	Inch signal (DA4 and 5 only)	ISO 119269)	3/8-24UNF-2B; 0.39 (10) deep	580 (40)	0

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Observe the general instructions on page 66 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Only dimensions according to SAE J518.

6) Plugged with external supply option (Code E)

7) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 63 and 64).

8) Optional, see page 55

9) The spot face can be deeper than specified in the appropriate standard.

10) For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells.

11) No standard ports, subject to change, please contact before use

O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

EP – Proportional control electric

SAE flange ports A and B, 45° left (viewed on drive shaft)¹⁾

For SAE flange ports A and B, 45° right (viewed on drive shaft), the complete case and thus the dimensions are mirrored.
 Center of gravity

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [psi (bar)] ⁴⁾	State
A, B ¹⁰⁾	Service line	SAE J5185)	1 1/2 in	7250 (500)	0
	Fastening thread A/B, screw grade 8 with hardened washer	ASME B1.1	5/8-11UNC; 1.14 (29) deep		
S	Suction line	SAE J518 ⁵⁾	1 1/2 in	75 (5)	O ⁶⁾
	Fastening thread A/B	ASME B1.1	1/2-13UNC; 0.94 (24) deep		
T ₁	Drain line	ISO 11926 ⁹⁾	1 5/8-12UN-2B; 0.77 (19.5) deep	45 (3)	O ⁷⁾
T ₂	Drain line	ISO 11926 ⁹⁾	1 5/8-12UN-2B; 0.77 (19.5) deep	45 (3)	X ⁷⁾
R	Air bleed	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	45 (3)	Х
X ₁ , X ₂	Control pressure (upstream of orifice)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
X ₁ , X ₂	Control pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
	(upstream of orifice, HT only)				
X ₃ , X ₄ ⁸⁾	Stroking chamber pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Χ
G	Boost pressure	ISO 11926 ⁹⁾	7/8-14UNF-2B; 0.67 (17) deep	580 (40)	Х
Ps	Pilot pressure, inlet	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	Х
Ps	Pilot pressure, inlet (DA6 only)	ISO 11926 ⁹⁾	3/4-16UNF-2B; 0.59 (15) deep	580 (40)	0
Y _{ST}	Pilot pressure, outlet	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х
Y _{ST}	Pilot pressure, outlet (DA6 only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Y _{HT}	Pilot pressure, outlet (HT only)	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
M_A, M_B	Measuring pressure A, B	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
M _H	Measuring high pressure	ISO 11926 ⁹⁾	9/16-18UNF-2B; 0.51 (13) deep	7250 (500)	Х
$F_{a}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	1 5/16-12UN-2B; 0.79 (20) deep	580 (40)	Х
$F_{a1}^{11)}$	Boost pressure	ISO 11926 ⁹⁾	No specification	580 (40)	Х
$F_{a2}^{11)}$	Boost pressure	ISO 119269)	No specification	580 (40)	Х
Y ₁ , Y ₂	Pilot signal (HP only)	ISO 119269)	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	0
Z	Inch signal (DA4 and 5 only)	ISO 11926 ⁹⁾	3/8-24UNF-2B; 0.39 (10) deep	580 (40)	0

1) ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

2) Thread according to ASME B1.1

3) Observe the general instructions on page 66 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Only dimensions according to SAE J518.

6) Plugged with external supply option (Code E)

7) Depending on installation position, T1 or T2 must be connected (see also installation instructions on pages 63 and 64).

8) Optional, see page 55

9) The spot face can be deeper than specified in the appropriate standard.

10)For the maximum utilization of pressure, only grade 8 screws and hardened washers are to be used to tighten the SAE flange shells. 11)No standard ports, subject to change, please contact before use

O = Must be connected (plugged on delivery) X = Plugged (in normal operation)

Through drive dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Flange SAE J744 ¹⁾		Coupling for splined shaft ²⁾												
	Mounting	variant												
Diameter	Symbol ³⁾	Designation	Diamete	er	Designation	045	065	085	110	145	175	210	280	
Without through drive														0000
82-2 (A)	ç	A1	5/8 in	9T 16/32DP	S2	0	0	\bullet	0	0	0	-	-	A1S2
			3/4 in	11T 16/32DP	S3	0	0	0	\bullet	-	-	\bullet	-	A1S3
	~	A2	5/8 in	9T 16/32DP	S2							-	-	A2S2
			3/4 in	11T 16/32DP	S3	\bullet	Ο	-	-	-	-	-	-	A2S3
101-2 (B)	ç	B1	7/8 in	13T 16/32DP	S4	0		\bullet	\bullet		\bullet	-	-	B1S4
			1 in	15T 16/32DP	S5	0	Ο	\bullet	0	\bullet	\bullet	-	-	B1S5
	~~	B2	7/8 in	13T 16/32DP	S4	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	-	-	B2S4
			1 in	15T 16/32DP	S5							-	-	B2S5
	°	B5	7/8 in	13T 16/32DP	S4	0	0	0	0	0	0	-	-	B5S4
			1 in	15T 16/32DP	S5	О	О	\bullet	\bullet	0	0	-	-	B5S5
101-4 (B)	сс С	B4	7/8 in	13T 16/32DP	S4	0	0	0	0	•	0	-	-	B4S4
			1 in	15T 16/32DP	S5	0	0	0	0	•	0	-	-	B4S5

NG		M1 ⁵⁾	M2	M3	M4	M5 ⁶⁾
45	in	10.5	0.35	0.37	1.39	3/8-16UNC-2B;
	mm	267.7	9	9.4	35.3	0.51 (13) deep
65	in	11.1	0.35	0.37	1.63	
	mm	281.6	9	9.4	41.3	
85	in	12.0	0.35	0.37	1.41	
	mm	305.9	9	9.4	35.8	
110	in	12.8	0.35	0.37	1.36	
	mm	324.3	9	9.4	34.6	
145	in	13.6	0.35	0.37	1.37	On request
	mm	346.2	9	9.3	34.7	
175	in	14.5	0.35	0.36	1.31	
	mm	369.3	9	9.1	33.4	
210	in	15.3	0.35	0.29	1.30	
	mm	389.6	9	7.3	33	
NG		M1 ⁵⁾	M2	M3	M4	M5 ⁶⁾
NG 45	in	M1 ⁵⁾ 10.7	M2 0.39	M3 0.49	M4 1.70	M5 ⁶⁾ On request
NG 45	in mm	M1 ⁵⁾ 10.7 270.7	M2 0.39 10	M3 0.49 12.4	M4 1.70 43.3	M5 ⁶⁾ On request
NG 45 65	in mm in	M1 ⁵⁾ 10.7 270.7 11.2	M2 0.39 10 0.39	M3 0.49 12.4 0.49	M4 1.70 43.3 1.74	M5 ⁶⁾ On request
NG 45 65	in mm in mm	M1 ⁵⁾ 10.7 270.7 11.2 284.6	M2 0.39 10 0.39 10	M3 0.49 12.4 0.49 12.4	M4 1.70 43.3 1.74 44.3	M5 ⁶⁾ On request
NG 45 65 85	in mm in mm in	M1 ⁵⁾ 10.7 270.7 11.2 284.6 12.2	M2 0.39 10 0.39 10 0.39	M3 0.49 12.4 0.49 12.4 0.43	M4 1.70 43.3 1.74 44.3 1.89	M5 ⁶⁾ On request 1/2-13UNC-2B;
NG 45 65 85	in mm in mm in mm	M1 ⁵⁾ 10.7 270.7 11.2 284.6 12.2 308.9	M2 0.39 10 0.39 10 0.39 10	M3 0.49 12.4 0.49 12.4 0.43 10.9	M4 1.70 43.3 1.74 44.3 1.89 47.9	M5 ⁶⁾ On request 1/2-13UNC-2B; 0.63 (16) deep
NG 45 65 85 110	in mm in mm in mm	M1 ⁵⁾ 10.7 270.7 11.2 284.6 12.2 308.9 12.9	M2 0.39 10 0.39 10 0.39 10 0.39	M3 0.49 12.4 0.49 12.4 0.43 10.9	M4 1.70 43.3 1.74 44.3 1.89 47.9 1.96	M5 ⁶⁾ On request 1/2-13UNC-2B; 0.63 (16) deep
NG 45 65 85 110	in mm in mm in mm in	M1 ⁵⁾ 10.7 270.7 11.2 284.6 12.2 308.9 12.9 327.3	 M2 0.39 10 0.39 10 0.39 10 0.39 10 10 	M3 0.49 12.4 0.49 12.4 0.43 10.9 0.43 10.9	M4 1.70 43.3 1.74 44.3 1.89 47.9 1.96 49.9	M5 ⁶⁾ On request 1/2-13UNC-2B; 0.63 (16) deep
NG 45 65 85 110 145	in mm in mm in mm in mm	M1 ⁵⁾ 10.7 270.7 11.2 284.6 12.2 308.9 12.9 327.3 13.8	 M2 0.39 10 0.39 10 0.39 10 0.39 10 0.39 10 0.39 	M3 0.49 12.4 0.49 12.4 0.43 10.9 0.43 10.9 0.41	M4 1.70 43.3 1.74 44.3 1.89 47.9 1.96 49.9 1.62	M5 ⁶⁾ On request 1/2-13UNC-2B; 0.63 (16) deep
NG 45 65 85 110 145	in mm in mm in mm in mm in	M1 ⁵⁾ 10.7 270.7 11.2 284.6 12.2 308.9 12.9 327.3 13.8 349.2	 M2 0.39 10 0.39 10 0.39 10 0.39 10 0.39 10 <li< th=""><th>M3 0.49 12.4 0.49 12.4 0.43 10.9 0.43 10.9 0.41 10.3</th><th>M4 1.70 43.3 1.74 44.3 1.89 47.9 1.96 49.9 1.62 41.2</th><th>M5⁶⁾ On request 1/2-13UNC-2B; 0.63 (16) deep</th></li<>	M3 0.49 12.4 0.49 12.4 0.43 10.9 0.43 10.9 0.41 10.3	M4 1.70 43.3 1.74 44.3 1.89 47.9 1.96 49.9 1.62 41.2	M5 ⁶⁾ On request 1/2-13UNC-2B; 0.63 (16) deep
NG 45 65 85 110 145 175	in mm in mm in mm in mm in mm	M1 ⁵⁾ 10.7 270.7 11.2 284.6 12.2 308.9 12.9 327.3 13.8 349.2 14.7	 M2 0.39 10 0.39 0.39 	M3 0.49 12.4 0.49 12.4 0.43 10.9 0.43 10.9 0.41 10.3	M4 1.70 43.3 1.74 44.3 1.89 47.9 1.96 49.9 1.62 41.2 1.63	M5 ⁶⁾ On request 1/2-13UNC-2B; 0.63 (16) deep

1) The through-drive flange is only supplied with the fastening thread corresponding to the ordering code designation.

2) Coupling for splined shaft according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

- 3) Mounting drillings pattern viewed on through drive with control at top
- 4) O-ring included in the delivery contents
- 5) Installation length M1 is valid for standard mounting flange and integrated boost pump.

6) Thread according to ASME B1.1, observe the general instructions on page 66 for the maximum tightening torques.

Through drive dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Flange SAE J744	Flange SAE J744 ¹⁾		Couplin	g for splined	shaft ²⁾									
	Mounting	variant												
Diameter	Symbol ³⁾	Designation	Diamete	er	Designation	045	065	085	110	145	175	210	280	
127-2 (C)	Ş	C1	1 in	15T 16/32DP	S5	-	-	-	-	0	-	-	-	C1S5
			1 1/4 in	14T 12/24DP	S7	0	0	•			0	0	0	C1S7
	⊷	C2	1 in	15T 16/32DP	S5	-	-	-	-	•	0	-	-	C2S5
			1 1/4 in	14T 12/24DP	S7									C2S7
			1 3/8 in	21T 16/32DP	V8	-	-	•	-	•	•	-	-	C2V8
			1 3/4 in	13T 8/16DP	T1	-	-	-	-	•	•	-	-	C2T1
	op	C5	1 in	15T 16/32DP	S5	-	-	-	-	0	-	-	-	C5S5
			1 1/4 in	14T 12/24DP	S7	0	0	0		0	0	0	0	C5S7
127-4 (C)	Control	C4	1 1/4 in	14T 12/24DP	S7	-	-	•	•			-	_	C4S7
			1 3/8 in	21T 16/32DP	V8	-	-		0	-	-	-	-	C4V8

NG		M1 ⁵⁾	M2	M3	M4
45	in	10.8	0.55	0.61	2.11
	mm	273.7	14	15.4	53.7
65	in	11.3	0.55	0.61	2.23
	mm	287.6	14	15.4	56.7
85	in	12.4	0.55	0.59	2.25
	mm	314.9	14	14.9	57.1
110	in	13.1	0.55	0.67	2.29
	mm	333.3	14	16.9	58.2
145	in	14.0	0.55	0.64	2.74
	mm	355.2	14	16.3	69.6
175	in	14.9	0.55	0.64	2.47
	mm	378.3	14	16.3	62.7
210	in	15.9	1.06	0.56	2.22
	mm	403.7	27	14.2	56.4
280	in	16.7	1.06	0.57	2.31
	mm	424.6	27	14.4	58.6

M5 ⁶⁾	
NG45, 65, 2-hole	On request
NG85 to 280, 2-hole	5/8-11UNC-2B;
	0.83 (21) deep
NG85, 110, 4-hole	On request
NG145, 175, 4-hole	1/2-13UNC-2B;
	0.83 (21) deep

1) The through-drive flange is only supplied with the fastening thread corresponding to the ordering code designation.

2) Coupling for splined shaft according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

3) Mounting drillings pattern viewed on through drive with control at top

4) O-ring included in the delivery contents

5) Installation length M1 is valid for standard mounting flange and integrated boost pump.

6) Thread according to ASME B1.1, observe the general instructions on page 66 for the maximum tightening torques.

Through drive dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Flange SAE J744 ¹⁾			Couplin	g for splined s	shaft ²⁾										
	Mounting	variant													
Diameter	Symbol ³⁾	Designation	Diamete	er	Designa	ation	04	45 065	085	110	145	175	210	280	
152-2 (D)	⊷	D2	1 3/4 in	13T 8/16DP	T1		-	- -	-	-	\bullet	0	-	_	D2T1
152-4 (D)	5 3	D4	1 3/8 in	21T 16/32DP	V8		-	- -	0	•	-	-	-	_	D4V8
			1 3/4 in	13T 8/16DP	T1		-	- -	-	-	\bullet		•		D4T1
165-4 (E)	53	E4	1 3/4 in	13T 8/16DP	T1		-	- -	-	-	0	•	-	-	E4T1
152-2						NG		M1 ⁵⁾	M2	M3	M	4	M5 ⁶)	
152-4						85	in	On rec	quest				3/4- 0.87	10UN ' (22)	IC-2B; deep
D4 🚟	6.36 (161.	6)					mm								
						110	in	13.3	0.55	0.63	3 2.5	24			
$- (\Phi)$		(Φ)					mm	337.4	14	15.9	9 56	6.9			
		\mathbf{i}				145	in	14.0	0.55	0.39	9 2.9	93			

	o mounting hai	ige/
165-4		
	8.84 (224.5)	O-ring ⁴⁾ G.102.1) (101.00) M2
0.04 (224.0)	_	M3
		M4
M1 (to n	nounting flange)

NG		M1 ⁵⁾	M2	MЗ	M4	M5 ⁶⁾
175	in	15.0	0.67	0.76	3.07	On research
	mm	381	17	19.4	77.9	On request

356.2

14.9

379.3

16.2

411.6

17.0

432.5

mm 175 in

mm

mm

mm

210 in

280 in

14

14

26

26

1.02

10

17.8

0.56

14.3

14.5

0.55 0.70

1.02 0.57

74.4

3.00

76.3

3.10

78.8

3.31

84

1) The through-drive flange is only supplied with the fastening thread corresponding to the ordering code designation.

- 2) Coupling for splined shaft according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5
- 3) Mounting drillings pattern viewed on through drive with control at top
- 4) O-ring included in the delivery contents

5) Installation length M1 is valid for standard mounting flange and integrated boost pump.

6) Thread according to ASME B1.1, observe the general instructions on page 66 for the maximum tightening torques.

Overview of mounting options

Through c	lrive ¹⁾		Mounting or	otions for 2nd	pump				
Flange	Coupling for splined shaft	Short code	A4VG/40 NG (shaft)	AA4VG/32 NG (shaft)	AA10VG NG (shaft)	AA10VO/31 NG (shaft)	A10VO/53 NG (shaft)	AA11VO NG (shaft)	External gear pump ²⁾
82-2 (A)	5/8 in	A_S2	-	-	_	18 (U)	10 (U)	_	Series F NG4 to 22
	3/4 in	A_S3	-	_	_	18 (S, R)	10 (S) 18 (S, R)	_	_
101-2 (B)	7/8 in	B_S4	_	_	18 (S)	28 (S, R) 45 (U, W)	28 (S, R) 45 (U, W)	_	Series N NG20 to 36 Series G NG32 to 50
	1 in	B_S5	-	28 (S)	28, 45 (S)	45 (S, R)	45 (S, R) 60 (U, W)	40 (S)) (S) – –
101-4 (B)	7/8 in	B4S4	-	-	-	-	-	_	-
	1 in	B4S5	-	_	_	-	-	-	_
127-2 (C)	1 in	C_S5	-	40 (U)	_	71 (U, W)	_	_	_
	1 1/4 in	C_S7	45 (S7) 65 (S7)	40, 56, 71 (S) 63 (S)	71 (S, R) 100 (U, W)	85 (U, W)	60 (S)	_
	1 3/8 in	C_V8	85, 110 (V8)	56, 71 (T)	63 (T)	-	-	60 (T)	-
	1 3/4 in	C_T1	85, 110 (T1)	-	-	-	-	-	-
127-4 (C)	1 1/4 in	C4S7	65 (S7)	71 (S)	-	-	60 (S, R)	-	-
	1 3/8 in	C4V8	85, 110 (V8)	71 (T)	-	-	-	-	-
152-2 (D)	1 3/4 in	D2T1	110, 145, 175 (T1)	90, 125 (S)	-	-	_	_	_
152-4 (D)	1 3/8 in	D4V8	110 (V8)	-	-	-	-	75 (T)	-
	1 3/4 in	D4T1	110, 145, 175 (T1)	90, 125 (S)	-	140 (S)	_	95, 130, 145 (S)	-
165-4 (E)	1 3/4 in	E4T1	175 (T1)	180, 250 (S)	-	-	-	190, 260 (S)	_

1) Availability of the individual sizes, see ordering code on page 4.

2) Bosch Rexroth recommends special versions of the gear pumps. Please contact us.

Combination pumps A4VG + A4VG

Total length A¹⁾ with standard mounting flange

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

A4VG		A4VG (2nd	pump) ²⁾						
(1st pump)		NG45	NG65	NG85	NG110	NG145	NG175	NG210	NG280
NCAE	in	21.1	-	-	-	-	-	-	-
NG45	mm	535.4	-	-	-	-	-	-	-
A4VG (1 st pump) NG45 ir NG65 Ir NG85 Ir NG110 Ir NG145 Ir NG175 Ir NG210 Ir NG280 I	in	21.6	22.2	-	-	-	-	-	-
NG05	mm	549.3	563.4	-	-	-	-	_	-
NOOF	in	22.7	23.2	24.2	-	-	-	_	_
NG85	mm	576.6	590.5	614.8	-	-	-	_	_
NG110	in	23.4	24.0	24.9	25.7	-	_	_	_
NGTIO	mm	595	608.9	633.2	652.6	-	-	NG210 - - - - - - - - - - - - -	-
NG85	in	24.3	24.8	25.8	26.6	27.6	-	_	-
NG145	mm	616.9	630.8	655.1	674.5	700.4	-	NG210 - - - - - - - - - - - - -	_
NO175	in	25.2	25.7	26.7	27.5	28.5	29.5	_	_
NGI75	mm	640	653.9	678.2	697.6	723.5	748.3	-	_
NC010	in	26.0	26.5	27.5	28.7	29.8			-
NG210	mm	660.3	674.2	698.5	729.9	755.8	- On request	On request	_
NG65 NG85 NG110 NG145 NG175 NG210 NG280	in	27.0	27.6	28.5	29.8	30.8			
NG280	mm	686.3	700.2	724.5	755.9	781.8	- On request	On request	On request

 Total length is valid for standard mounting flange and integrated boost pump.

 2) 2nd pump without through drive and with boost pump, F0000/V0000

By using combination pumps, it is possible to have independent circuits without the need for splitter gearboxes.

When ordering combination pumps, the type designations of the 1st and 2nd pumps must be linked by a "+".

Ordering example: A4VG065EP1DP000/40ARNC6S71FC2S7AS00-0+ A4VG045EP1DP000/40ARNC2S71F0000AS00-0

A tandem pump consisting of two equal sizes is permissible without additional supports assuming that the dynamic acceleration does not exceed maximum 10 g = 322 ft/s² (= 98.1 m/s²).

We recommend the use of the 4-hole mounting flanges for size 85 and larger.

For combination pumps consisting of more than two pumps, the mounting flange must be rated for the permissible mass torque.

Pressure cut-off

The pressure cut-off is a pressure control which, after reaching the set pressure, adjusts the displacement of the pump back to $V_{g\mbox{ min}}.$

This valve prevents the operation of the high-pressure relief valves when accelerating or decelerating.

The high-pressure relief valves protect against the pressure spikes which occur during fast swiveling of the swashplate and limit the maximum pressure in the system.

The setting range of the pressure cut-off may be anywhere within the entire operating pressure range. However, it must be set 435 psi (30 bar) lower than the setting of the high-pressure relief valves (see setting diagram, page 54).

Please state the setting value of the pressure cut-off in plain text when ordering.

Schematic with pressure cut-off Example: electric control, EP_D

Schematic without pressure cut-off

Bypass function

A connection between the two high-pressure channels A and B can be established using the bypass valve (e. g. for machine towing).

Towing speed

The maximum towing speed is dependent on the gear ratio in the vehicle and must be calculated by the vehicle manufacturer. The corresponding flow of Q = 7.9 gpm (30 L/min) may not be exceeded.

Towing distance

The vehicle may only be towed out of the immediate danger zone.

High-pressure relief valves

The two high-pressure relief valves protect the hydrostatic transmission (pump and motor) from overload. They limit the maximum pressure in the respective high-pressure line and serve simultaneously as boost valves.

High-pressure relief valves are not working valves and are only suitable for pressure spikes or high rates of pressure change.

Setting diagram

Version without pressure cut-off

Example:

Operating pressure p _{A,B}	6500 psi (450 bar)
Boost pressure p _{Sp}	290 psi (20 bar)
Differential pressure Δp_{HD}	6210 psi (430 bar)

ра,в	p _{Sp}	Δp_{HD}
6500 psi	– 290 psi	= 6210 psi
(450 bar)	(20 bar)	(430 bar)

Version with pressure cut-off

Example:

Operating pressure pA,B		6500 psi (450 bar)
Boost pressure p _{Sp}		290 psi (20 bar)
Differential pressure Δp_{HI}	D	6645 psi (460 bar)
PA,B PSp 6500 psi - 290 psi + (450 bar) (20 bar)	safety 435 psi = (30 bar)	∆р _{НD} 6645 psi (460 bar)

When ordering, state differential pressure setting in plain text:

The following values are available for selection of the differential pressure setting (fixed setting): Preferred values [psi (bar)]:

5800 (400), 5950 (410), 6100 (420), 6250 (430), 6400 (440), 6500 (450), 6650 (460), 6800 (470) Optional values [psi (bar)]: 4350 (300), 4650 (320), 4950 (340), 5200 (360), 5500 (380)

If not specified in the order, valves will be set to the differential pressure $\Delta p = 6100$ psi (420 bar).

High-pressure relief valve A

Differential pressure setting $\Delta p_{HD} = ... psi$ (bar)

Cracking pressure of the HD valve (at $q_{V 1}$) _ $p_{max} = ... psi$ (bar) $(p_{max} = \Delta p_{HD} + p_{Sp})$

High-pressure relief valve B

Differential pressure setting $\Delta p_{HD} = ... psi$ (bar)

Cracking pressure of the HD valve (at $q_{V 1}$) _ $p_{max} = ... psi$ (bar) $(p_{max} = \Delta p_{HD} + p_{Sp})$

Note

The valve settings are made at n = 1000 rpm and at $V_{g max} (q_{v 1})$. There may be deviations in the cracking pressures with other operating parameters.

Mechanical stroke limiter

The mechanical stroke limiter is an auxiliary function allowing the maximum displacement of the pump to be steplessly reduced, regardless of the control module used.

With two threaded pins, the stroke of the stroke piston and thus the maximum swivel angle at the pump is limited.

Dimensions

NG	M1	M2	М3
45	4.81 (122.1) (4.61 (117.2)) ¹⁾	0.98 (24.9)	5.63 (143)
65	5.24 (133)	0.98 (24.9)	5.63 (143)
85	5.48 (139.2)	1.09 (27.7)	6.19 (157.3)
110	6.05 (153.6)	1.09 (27.7)	6.19 (157.3)
145	6.10 (155)	1.33 (33.8)	6.70 (170.1)
175	6.88 (174.8)	1.33 (33.8)	6.70 (170.1)
210	7.24 (183.9)	1.5 (38.1)	7.86 (199.6)
280	8.06 (204.7)	1.5 (38.1)	7.86 (199.6)

Schematic

Ports X₃ and X₄ for stroking chamber pressure

Dimensions

NG	T1	T2	Т3
45	5.17 (131.3) (4.98 (126.4)) ¹⁾	0.86 (21.8)	4.61 (117)
65	5.60 (142.2)	0.86 (21.8)	4.61 (117)
85	5.80 (147.4)	0.86 (21.8)	5.04 (128)
110	6.37 (161.8)	0.86 (21.8)	5.04 (128)
145	6.49 (164.9)	1.04 (26.4)	5.59 (142)
175	7.27 (184.7)	1.04 (26.4)	5.59 (142)
210	7.70 (195.7)	1.20 (30.6)	6.54 (166)
280	8.53 (216.6)	1.20 (30.6)	6.54 (166)

Schematic

Designation	Port for	Standard ²⁾	Size ³⁾	Maximum pressure [psi (bar)] ⁴⁾	State ⁵⁾
X ₃ , X ₄	Stroking chamber pressure	ISO 11926	9/16-18UNF-2B; 0.51 (13) deep	580 (40)	Х

1) For version with mounting flange B2.

2) The spot face can be deeper than specified in the appropriate standard.

3) Observe the general instructions on page 66 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
 5) X = Plugged (in normal operation)

5) Λ – Flugged (in normal operation) Defense finalizing values design requests a binding installation dra

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Version S (standard)

Filtration in the suction line of the boost pump

Standard version (preferred)

Filter type		filter without bypass
-------------	--	-----------------------

Recommendation _____ with contamination indicator

Recommended differential pressure at filter cartridge

At $v = 140$ SUS, $n = n_{max}$	∆p ≤ 1.5 psi
(30 mm²/s, n = n _{max}	$_\ \Delta p \le 0.1 bar)$
At $v = 4600$ SUS, $n = n_{max}$	∆p ≤ 4.5 psi
$(1000 \text{ mm}^2/\text{s}, n = n_{\text{max}}$	$\Delta p \leq 0.3$ bar)

Pressure at suction port S

Continuous $p_{S \min}$ (v \leq 140 SUS) _	≥ 12 psi absolute
(v ≤ 30 mm²/s)	$_\ \ge 0.8$ bar absolute
Short-term, on cold start (t < 3 min)	\geq 7.5 psi (0.5 bar) absolute
Maximum p _{S max}	\leq 75 psi (5 bar) absolute

The filter is not included in the delivery contents.

Schematic standard version S

Version D

Filtration in the pressure line of the boost pump, ports for external boost circuit filter

Boost pressure inlet		port Fa
----------------------	--	---------

Boost pressure outlet _____ port Fe

Filter type

Filter with bypass are **not recommended**. For applications with bypass please contact us.

Recommendation _____ with contamination indicator

Note

For versions with **HT** control (with pilot pressure not from boost circuit), the following filter type should be used:

Filter with bypass and with contamination indicator

Filter arrangement

Separate in the pressure line (inline filter)

Permissible differential pressure at filter cartridge

At v = 140 SUS (30 mm²/s) $\Delta p \le 15$ psi (1 bar)

		 			-	
At cold start		 $\Delta p \leq$	45	psi	(3	bar)

(valid for entire speed range n_{min} - n_{max})

The filter is not included in the delivery contents.

Schematic version D (external boost circuit filter)

Version F

Filtration in pressure line of boost pump, filter mounted

Filter type	filter without bypass
Filtration grade (absolute)	20 microns

Filter material _____ glass fiber

Pressure rating _____ 1450 psi (100 bar)

Filter arrangement ______mounted on pump

Note

Filter is equipped with **cold start valve** and thereby protects the system from damage.

The valve opens at a differential pressure $\Delta p \ge 90$ psi (6 bar).

Recommendation

With contamination indicator (version B)

(differential pressure $\Delta p = 75 \text{ psi} (5 \text{ bar}))$

Filter characteristics

Differential pressure/flow characteristics to ISO 3968 (valid for clean filter cartridge).

Schematic version F (with filter)

Version B

Filtration in the pressure line of the boost pump, filter mounted, with electric contamination indicator

Filtration similar to variation F, however additionally with electric contamination indicator.

Indication	electric
Connector design (mating connector, see page 60)	_DEUTSCH DT04-2P-EP04
Differential pressure (switching pre	essure) $\Delta p = 75 \text{ psi} (5 \text{ bar})$
Maximum switching capacity at	

 12 V DC
 36 W

 24 V DC
 72 W

Type of protection IP 67 _____DIN/EN 60529

Schematic version B

Version E External supply

This variation should be used in versions **without** integrated boost pump (U).

Port S is plugged.

Supply comes from port G.

Filter arrangement _

separate

To ensure the functional reliability, maintain the required cleanliness level for the boost fluid fed in at port G (see page 7).

Schematic version E (external supply)

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Dimensions

Version B

Filter mounted with electric contamination indicator

Version D Ports for inline filter

NG	F1	F2	F3	F4	F5	F6	F7	F _a , F _e ¹⁾²⁾
45	1.85 (47.1) (1.66 (42.2)) ³	8.19 (208)	0.87 (22)	4.11 (104.5)	8.39 (213.1) (8.20 (208.2)) ³	1.18 (30)	0.39 (10)	1 1/16-12UN-2B;
65	2.44 (62)	8.19 (208)	0.87 (22)	4.11 (104.5)	8.98 (228)	1.18 (30)	0.39 (10)	- 0.79 (20) deep
85	2.44 (62.1)	9.04 (229.5)	0.87 (22)	4.76 (121)	9.85 (250.1)	1.46 (37)	0.55 (14)	_
110	3.01 (76.5)	9.04 (229.5)	0.87 (22)	4.76 (121)	10.41 (264.5)	1.46 (37)	0.55 (14)	_
145	1.46 (37.2)	9.43 (239.5)	0.87 (22)	5.16 (131)	11.35 (288.2)	1.46 (37)	0.55 (14)	1 5/16-12UN-2B;
175	2.24 (57)	9.43 (239.5)	0.87 (22)	5.16 (131)	12.13 (308)	1.46 (37)	0.55 (14)	0.79 (20) deep
210	2.72 (69)	10.49 (266.5)	0.87 (22)	5.76 (146.3)	12.80 (325)	1.69 (43)	0.39 (10)	_
280	3.54 (89.9)	10.49 (266.5)	0.87 (22)	5.76 (146.3)	13.62 (345.9)	1.69 (43)	0.39 (10)	

1) Observe the general instructions on page 66 for the maximum tightening torques.

2) The spot face can be deeper than specified in the appropriate standard.

3) For version with mounting flange B2.

Connector for solenoids

DEUTSCH DT04-2P-EP04

Molded, 2-pin, without bidirectional suppressor diode

There is the following type of protection with mounted mating connector: DIN/EN 60529 IP67

and IP69K DIN 40050-9

Circuit symbol

Mating connector

DEUTSCH DT06-2S-EP04

Bosch Rexroth Mat. No. R902601804

Consisting of:	DT designation
- 1 housing	DT06-2S-EP04
– 1 wedge	W2S

2 sockets 0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Bosch Rexroth on request.

Changing connector orientation

If necessary, you can change the connector orientation by turning the solenoid housing.

To do this, proceed as follows:

- 1. Loosen the mounting nut (1) of the solenoid. To do this, turn the mounting nut (1) one turn counter-clockwise.
- 2. Turn the solenoid body (2) to the desired orientation.
- 3. Retighten the mounting nut. Tightening torque: 3.7+0.7 lb-ft (5+1 Nm). (WAF26, 12-sided DIN 3124)

On delivery, the connector orientation may differ from that shown in the brochure or drawing.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Speed sensor

With the speed sensor DSA mounted, a signal proportional to pump speed can be generated. The DSA sensor measure the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety information about the sensor can be found in the relevant data sheet (DSA - RE 95133).

The sensor is mounted on the port provided for this purpose with a mounting bolt.

Dimensions

NG	Α	В	Number of teeth
45	4.84 (123) (4.65 (118.1)) ¹⁾	0.22 (5.5)	32
65	5.43 (137.9)	0.22 (5.5)	45
85	5.79 (147.1)	0.22 (5.5)	50
110	6.36 (161.5)	0.22 (5.5)	53
145	7.13 (181.2)	0.22 (5.5)	58
175	7.91 (201.0)	0.22 (5.5)	61
210	7.48 (190)	0.22 (5.5)	64
280	8.30 (210.9)	0.22 (5.5)	71

1) For version with mounting flange B2.

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Swivel angle sensor

For the swivel angle indicator, the pump swivel angle is measured by an electric swivel angle sensor.

As an output parameter, the Hall-effect swivel angle sensor delivers a voltage proportional to the swivel angle (see table of output voltages).

Please contact us if the swivel angle sensor is used for control.

Characteristics	
Supply voltage U _b	10 to 30 V DC
Output voltage U _a	1 V (V _{g max}) 2.5 V (V _{g 0}) 4 V (V _{g max})
Reverse voltage protection	Short circuit-resistant
EMC resistance	Details on request
Operating temperature range	-40 °F to 240 °F (-40 °C to +115 °C)
Vibration resistance sinusoidal vibration EN 60068-2-6	322 ft/s ² (10 <i>g</i>) / 5 to 2000 Hz
Shock resistance continuous shock IEC 68-2-29	805 ft/s² (25 <i>g</i>)
Resistance to salt spray DIN 50 021-SS	96 h
Type of protection with mounted mating connector	IP67 – DIN/EN 60529 IP69K – DIN 40050-9
Housing material	Plastic

Output voltage

		Flow direction ¹⁾	Operating pressure	Output voltage
of	_	B to A	M _A	> 2.5 V
ion D	Š	A to B	M _B	< 2.5 V
rect	≥	A to B	M _B	> 2.5 V
<u>i</u> 5	S	B to A	M _A	< 2.5 V

1) For flow direction, see controls

Schematic

Electric swivel angle sensor

Dimensions

NG	Α	В	С
45	1.57 (39.9) (1.38 (35)) ¹⁾	5.31 (134.8)	1.46 (37)
65	1.55 (39.4)	5.31 (134.8)	1.46 (37)
85	1.87 (47.4)	5.66 (143.8)	1.46 (37)
110	2.03 (51.5)	5.86 (148.8)	1.46 (37)
145	2.09 (53.1)	6.33 (160.8)	1.46 (37)
175	2.54 (64.4)	6.33 (160.8)	1.46 (37)
210	2.72 (69)	6.84 (173.8)	1.46 (37)
280	2.96 (75.1)	6.84 (173.8)	1.46 (37)

2) For version with mounting flange B2.

Mating connector

DEUTSCH DT06-3S-EP04

Bosch Rexroth Mat. No. R902603524

Consisting of:	DT designation
– 1 housing	DT06-3S-EP04
– 1 wedge	W3S
- 3 sockets	0462-201-16141

The mating connector is not included in the delivery contents. This can be supplied by Bosch Rexroth on request.

Installation dimensions for coupling assembly

To ensure that rotating components (coupling hub) and fixed components (housing, circlip) do not come into contact with each other, the installation conditions described here must be observed. This depends on the pump size and the splined shaft.

SAE splined shaft (spline according to ANSI B92.1a)

The outer diameter of the shoulder on coupling hub must be smaller than the inner diameter of the circlip d_2 in the area near the drive shaft collar (dimension $x_2 - x_3$).

NG	Mounting fla	nge	ød1	ød _{2 min}	ød3	ød4	x ₁	X ₂	X3 (approx.)
45	101-2 (B)	in	1.77	1.99	2.874 ±0.004	4.00	0.161	0.38 -0.02	0.315
	-	mm	45	50.5	73 ±0.1	101.6	4.1	9.7 _{-0.5}	8
	127-2 (C)	in	1.77	1.99	2.874 ±0.004	5.00	0.004	0.5 -0.02	0.315
		mm	45	50.5	73 ±0.1	127	0.1	12.7 _{-0.5}	8
65	127-2/4 (C)	in	1.77	2.30	3.189 ±0.004	5.00	0.252	0.5 -0.02	0.315
		mm	45	58.5	81 ±0.1	127	6.4	12.7 _{-0.5}	8
85	127-2/4 (C)	in	1.97	2.54	$\textbf{3.583} \pm 0.004$	5.00	0.138	0.5 -0.02	0.315
		mm	50	64.4	91 ±0.1	127	3.5	12.7 _{-0.5}	8
	152-2/4 (D)	in	On request						
		mm	On request						
110	127-2/4 (C)	in	2.17	2.93	3.976 ±0.004	5.00	0.16	0.5 -0.02	0.315
		mm	55	74.4	101 ±0.1	127	4.0	12.7 _{-0.5}	8
	152-2/4 (D)	in	2.17	2.93	3.976 ±0.004	6.00	0.236	0.5 -0.02	0.315
		mm	55	74.4	101 ±0.1	152.4	6.0	12.7 _{-0.5}	8
145	152-2/4 (D)	in	2.36	3.32	4.370 ±0.004	6.00	0.291	0.5 -0.02	0.315
		mm	60	84.4	111 ±0.1	152.4	7.4	12.7 _{-0.5}	8
	165-4 (E)	in	On request	equest					
		mm	Onrequest						
175	152-2/4 (D)	in	2.36	3.32	4.370 ±0.004	6.00	0.276	0.5 -0.02	0.315
		mm	60	84.4	111 ±0.1	152.4	7.0	12.7 _{-0.5}	8
	165-4 (E)	in	2.36	3.32	4.370 ±0.004	6.50	0.276	0.63 -0.02	0.315
		mm	60	84.4	111 ±0.1	165.1	7.0	15.9 _{-0.5}	8
210	165-4 (E)	in	2.56	4.12	4.76	6.5	0.22	0.63 -0.02	0.315
		mm	65	104.6	121 ±0.1	165.1	5.5	15.9 _{-0.5}	8
280	165-4 (E)	in	2.56	4.12	4.76	6.5	0.276	0.63 -0.02	0.315
		mm	65	104.6	121 ±0.1	165.1	7.0	15.9 _{-0.5}	8

Before finalizing your design, request a binding installation drawing. Dimensions in inch (mm).

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.

The case drain fluid in the pump housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the suction and drain lines must flow into the reservoir below the minimum fluid level. The permissible suction height h_S results from the overall loss of pressure; it must not, however, be higher than $h_{S max} = 31.5$ in (800 mm). The minimum suction pressure at port S must also not fall below 12 psi (0.8 bar) absolute during operation (cold start 7.5 psi (0.5 bar) absolute).

Installation position

See the following examples 1 to 12. Further installation positions are available upon request.

Recommended installation position: 1 and 2.

Notes

- With the "drive shaft upwards" installation position, an R₁-port is necessary (special version).
- If it is not possible to fill the stroking chambers via X₁ to X₄ in the final installation position, this must be done prior to installation.
- To prevent unexpected actuation and damage, the stroking chambers must be bled via the ports X₁, X₂ or X₃, X₄ depending on the installation position.
- In certain installation positions, an influence on the control characteristics can be expected. Gravity, dead weight and case pressure can cause minor shifts in control characteristics and changes in response time.

Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Installation Position	Bleeding the case	Bleeding the stroking chamber	Filling
1	R	X ₁ , X ₂	$S + T_1 + X_1 + X_2$
2	-	-	S + T ₂
3	-	X ₁ , X ₂	$S + T_2 + X_1 + X_2$
4	R ₁	X ₃ , X ₄	$S + T_1 + X_3 + X_4$
5	-	X ₃	$S + T_2 + X_3$
6	-	X ₄	$S + T_1 + X_4$

Note instructions!

Key, see page 64.

Installation instructions

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Observe the maximum permissible suction height $h_{S max} = 31.5$ in (800 mm).

Recommendation for installation position 10 (drive shaft upward): A check valve in the drain line (cracking pressure 7.5 psi (0.5 bar)) can prevent draining of the pump housing.

Installation Position	Bleeding the case	Bleeding the stroking chamber	Filling
7	$L_2 + R$	X ₁ , X ₂	$L_1 + L_2 + X_1 + X_2$
8	$L_2(S) + L_1(T_2)$	_	$L_2(S) + L_1(T_2)$
9	$L_2(S) + L_1(T_2)$	X ₁ , X ₂	$L_2 (S) + L_1 (T_2) + X_1 + X_2$
10	$L_2 + R_1$	X ₃ , X ₄	$L_1 + L_2 + X_3 + X_4$
11	$L_2(S) + L_1(T_2)$	X ₃	$L_2 (S) + L_1 (T_2) + X_3$
12	$L_2(S) + L_1(T_1)$	X ₄	$L_2 (S) + L_1 (T_1) + X_4$

Comply with notes on page 63!

	Fillina /	air	bleed
∟1, ∟2	r ming /	an	Diccu

- R Air bleed port
- S Suction port
- T₁, T₂ Drain port
- SB Baffle (baffle plate)
- h_{t min} Minimum required immersion depth (7.87 in (200 mm))
- h_{min} Minimum required spacing to reservoir bottom (3.94 in (100 mm))
- h_{S max} Maximum permissible suction height (31.50 in (800 mm))
- a_{min} When designing the reservoir, ensure adequate space between the suction line and the drain line. This prevents the heated, return flow from being drawn directly back into the suction line.

General instructions

Ports		Maximum permissible	Required	WAF beyagon socket of the	
Standard	Size of thread	female threads M _{G max}	threaded plugs M _V	threaded plugs	
ISO 11926	3/8-24 UNF-2B	15 lb-ft	7 lb-ft	5/32 in	
		20 Nm	10 Nm	-	
	9/16-18 UNF-2B	59 lb-ft	26 lb-ft	1/4 in	
		80 Nm	35 Nm	-	
	3/4-16 UNF-2B	118 lb-ft	52 lb-ft	5/16 in	
		160 Nm	70 Nm	-	
	7/8-14 UNF-2B	177 lb-ft	81 lb-ft	3/8 in	
		240 Nm	110 Nm		
	1 1/16-12 UN-2B	266 lb-ft	125 lb-ft	9/16 in	
		360 Nm	170 Nm	-	
	1 5/16-12 UN-2B	398 lb-ft	199 lb-ft	5/8 in	
		540 Nm	270 Nm	-	
	1 5/8-12 UN-2B	708 lb-ft	236 lb-ft	3/4 in	
		960 Nm	320 Nm	-	
	1 7/8-12 UN-2B	885 lb-ft	288 lb-ft	3/4 in	
		1200 Nm	390 Nm		

General instructions

- The pump A4VG is designed to be used in closed circuit.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit and especially on the solenoids. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instructions regarding the tightening torques of the fittings used.

- Mounting bolts: For mounting bolts with thread according to ASME B1.1, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.
- Female threads in the axial piston unit: The maximum permissible tightening torques M_{G max} are maximum values of the female threads and must not be exceeded. For values, see table on page 67.
- Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see table on page 67.

Bosch Rexroth Corporation Mobile Applications 8 Southchase Court Fountain Inn, SC 29644-9018, USA Telephone (864) 967-2777 Facsimile (864) 967-8900 www.boschrexroth-us.com

© Bosch Rexroth Corporation

All rights reserved. Neither this document, nor any part of it, may be reproduced, duplicated, circulated or disseminated, whether by copy, electronic format or any other means, without the prior consent and authorization of Bosch Rexroth Corp. The data and illustrations in this brochure/data sheet are intended only to describe or depict the products. No representation or warranty, either express or implied, relating to merchantability or fitness for intended use, is given or intended by virtue of the information contained in this brochure/data sheet. The information contained in this brochure/data sheet. The information to insure the proper use of the products for a specific use or application. All products contained in this brochure/data sheet are subject to normal wear and tear from usage.

Subject to change.

Bosch Rexroth Corporation Mobile Applications 8 Southchase Court Fountain Inn, SC 29644-9018, USA Telephone (864) 967-2777 Facsimile (864) 967-8900 www.boschrexroth-us.com

© Bosch Rexroth Corporation

All rights reserved. Neither this document, nor any part of it, may be reproduced, duplicated, circulated or disseminated, whether by copy, electronic format or any other means, without the prior consent and authorization of Bosch Rexroth Corp. The data and illustrations in this brochure/data sheet are intended only to describe or depict the products. No representation or warranty, either express or implied, relating to merchantability or fitness for intended use, is given or intended

by virtue of the information contained in this brochure/data sheet. The information contained in this brochure/data sheet in no way relieves the user of its obligation to insure the proper use of the products for a specific use or application. All products contained in this brochure/data sheet are subject to normal wear and tear from usage.

Subject to change.